【題目】如圖,在中,對角線AC,BD交于點O,E是AD上任意一點,連接EO并延長,交BC于點F,連接AF,CE.
(1)求證:四邊形AFCE是平行四邊形;
(2)若,°,.
①直接寫出的邊BC上的高h的值;
②當點E從點D向點A運動的過程中,下面關于四邊形AFCE的形狀的變化的說法中,正確的是
A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形
B.平行四邊形→矩形→平行四邊形→正方形→平行四邊形
C.平行四邊形→菱形→平行四邊形→菱形→平行四邊形
D.平行四邊形→菱形→平行四邊形→矩形→平行四邊形
【答案】(1)見解析;(2)①;②D
【解析】
(1)由四邊形ABCD是平行四邊形可得AD∥BC,AO=CO,根據“AAS”證明△AOE≌△COF,可得OE=OF,從而可證四邊形AFCE是平行四邊形;
(2)①作AH⊥BC于點H,根據銳角三角函數的知識即可求出AH的值;
②根據圖形結合平行四邊形、矩形、菱形的判定逐個階段進行判斷即可.
(1)證明:在中,對角線AC,BD相交于點O.
∴,.
∴,.
∴.
∴.
∵,,
∴四邊形AFCE是平行四邊形.
(2)①作AH⊥BC于點H,
∵AD∥BC,∠DAC=60°,
∴∠ACF=∠DAC=60°,
∴AH=AC·sin∠ACF=,
∴BC上的高h=;
②在整個運動過程中,OA=OC,OE=OF,
∴四邊形AFCE恒為平行四邊形,
E點開始運動時,隨著它的運動,∠FAC逐漸減小,
當∠FAC=∠EAC=60°時,即AC為∠FAE的角平分線,
∵四邊形AFCE恒為平行四邊形,
∴四邊形AFCE為菱形,
當∠FAC+∠EAC=90°時,即∠FAC=30°,
此時AF⊥FC,
∴此時四邊形AFCE為矩形,
綜上,在點E從點D向點A運動過程中,四邊形AFCE先后為平行四邊形、菱形、平行四邊形、矩形、平行四邊形.
故選D.
科目:初中數學 來源: 題型:
【題目】某課外研究小組為了解學生參加課外體育活動的情況,采取抽樣調查的方法從籃球、排球、乒乓球、足球及其他等五個方面調查了若干名同學的興趣愛好(每人只能選其中一項),并將調查結果繪制成統計圖,請根據圖中提供的信息解答下列問題:
(1)在這次考察中一共調查了 名學生,請補全條形統計圖;
(2)被調查同學中恰好有5名學來自初一12班,其中有2名同學選擇了籃球,有3名同學選擇了乒乓球,曹老師打算從這5名同學中選擇兩同學了解他們對體育社團的看法,請用列表法或畫樹狀圖法,求選出的兩人恰好為一人選擇籃球、一人選擇乒乓球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】透明的口袋里裝有3個球,這3個球分別標有數字1、2、3,這些球除了數字外都相同。
(1)如果從袋中任意摸出一個球,那么摸到標有數字是2的球的概率是多少?(3分)
(2)小明和小東玩摸球游戲,游戲規(guī)則如下:先由小明隨機摸出一個球,記下球的數字后放回,攪勻后再由小東隨機摸出一個球,記下球的數字.誰摸出的球的數字大,誰獲勝.現請你利用樹狀圖或列表的方法分析游戲規(guī)則對雙方是否公平?并說明理由。(6分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次社會調查活動中,小華收集到某“健步走運動”團隊中20名成員一天行走的步數,記錄如下:
5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
對這20個數據按組距1000進行分組,并統計整理,繪制了如下尚不完整的統計圖表:
步數分組統計表
組別 | 步數分組 | 頻數 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
請根據以上信息解答下列問題:
(1)填空:m= ______ ,n= ______ ;
(2)補全頻數發(fā)布直方圖;
(3)這20名“健步走運動”團隊成員一天行走步數的中位數落在______ 組;
(4)若該團隊共有120人,請估計其中一天行走步數不少于7500步的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【數學概念】
若四邊形ABCD的四條邊滿足ABCDADBC,則稱四邊形ABCD是和諧四邊形.
【特例辨別】
(1)下列四邊形:①平行四邊形,②矩形,③菱形,④正方形.其中一定是和諧四邊形的是________.
【概念判定】
(2)如圖①,過⊙O外一點P引圓的兩條切線PS、PT,切點分別為A、C,過點P 作一條射線PM,分別交⊙O于點B、D,連接AB、BC、CD、DA.求證:四邊形ABCD是和諧四邊形.
【知識應用】
(3)如圖②,CD是⊙O的直徑,和諧四邊形ABCD內接于⊙O,且BCAD.請直接寫出AB與CD的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】樹葉有關的問題
如圖,一片樹葉的長是指沿葉脈方向量出的最長部分的長度(不含葉柄),樹葉的寬是指沿與主葉脈垂直方向量出的最寬處的長度,樹葉的長寬比是指樹葉的長與樹葉的寬的比值。
某同學在校園內隨機收集了A樹、B樹、C樹三棵的樹葉各10片,通過測量得到這些樹葉的長y(單位:cm),寬x(單位:cm)的數據,計算長寬比,理如下:
表1 A樹、B樹、C樹樹葉的長寬比統計表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
A樹樹葉的長寬比 | 4.0 | 4.9 | 5.2 | 4.1 | 5.7 | 8.5 | 7.9 | 6.3 | 7.7 | 7.9 |
B樹樹葉的長寬比 | 2.5 | 2.4 | 2.2 | 2.3 | 2.0 | 1.9 | 2.3 | 2.0 | 1.9 | 2.0 |
C樹樹葉的長寬比 | 1.1 | 1.2 | 1.2 | 0.9 | 1.0 | 1.0 | 1.1 | 0.9 | 1.0 | 1.3 |
表1 A樹、B樹、C樹樹葉的長寬比的平均數、中位數、眾數、方差統計表
平均數 | 中位數 | 眾數 | 方差 | |
A樹樹葉的長寬比 | 6.2 | 6.0 | 7.9 | 2.5 |
B樹樹葉的長寬比 | 2.2 | 0.38 | ||
C樹樹葉的長寬比 | 1.1 | 1.1 | 1.0 | 0.02 |
A樹、B樹、C樹樹葉的長隨變化的情況
解決下列問題:
(1)將表2補充完整;
(2)①小張同學說:“根據以上信息,我能判斷C樹樹葉的長、寬近似相等。”
②小李同學說:“從樹葉的長寬比的平均數來看,我認為,下圖的樹葉是B樹的樹葉。”
請你判斷上面兩位同學的說法中,誰的說法是合理的,誰的說法是不合理的,并給出你的理由;
(3)現有一片長103cm,寬52cm的樹葉,請將該樹葉的數用“★”表示在圖1中,判斷這片樹葉更可能來自于A、B、C中的哪棵樹?并給出你的理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了開展陽光體育運動,某市教體局做了一個隨機調查,調查內容是:每天鍛煉是否超過1h及鍛煉未超過1h的原因.他們隨機調查了600名學生,用所得的數據制成了扇形統計圖和頻數分布直方圖(圖1、圖2).
根據圖示,請回答以下問題:
(1)“沒時間”的人數是 ,并補全頻數分布直方圖;
(2)2016年該市中小學生約40萬人,按此調查,可以估計2016年全市中小學生每天鍛煉超過1h的約有 萬人;
(3)在(2)的條件下,如果計劃2018年該市中小學生每天鍛煉未超過1h的人數降到7.5萬人,求2016年至2018年鍛煉未超過1h人數的年平均降低的百分率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,P是CD上一點,且AP和BP分別平分∠DAB和∠CBA.
(1)求∠APB的度數;
(2)如果AD=5 cm,AP=8 cm,求△APB的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象經過點A(1,0),B(2,0),C(0,﹣2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出F點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com