【題目】如圖,等腰△ABC中,AB=BC,將△ABC繞頂點B逆時針方向旋轉度到△A1BC1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E、F.
(1)若∠ABC=,∠DBF=,則=______°;
(2)求證:△BCF≌△BA1D;
(3)連接DF,當∠DBF=時,判定△DBF的形狀并說明理由.
【答案】(1)40;(2)證明見解析;(3)△BCF是等邊三角形,理由見解析.
【解析】分析:(1)根據旋轉的性質得,=∠ABC-∠DBF=40°;
(2)根據等腰三角形的性質得到AB=BC,∠A=∠C,由旋轉的性質得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根據全等三角形的判定定理得到△BCF≌△BA1D;
(3) 由(2)得BD=BF,根據有一個角是60°的等腰三角形是等邊三角形即可得解.
詳解:(1)=∠ABC-∠DBF=40°
(2)證明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
∵將等腰△ABC繞頂點B逆時針方向旋轉α度到△A1BC1的位置,
∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
在△BCF與△BA1D中,
∴△BCF≌△BA1D(ASA);
(3)△BCF是等邊三角形
理由:∵由(2)得:△BCF≌△BA1D
∴BD=BF
∴△BCF是等腰三角形
又∵∠DBF=60度
∴△BCF是等邊三角形
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦.過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關系,并說明理由;
(2)若AB=9,BC=6.求PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則圖中與∠DFM相等的角(不含它本身)的個數(shù)為( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩位同學將一個二次三項式因式分解,一位同學因看錯了一次項系數(shù)而分解成2,另一位同學因看錯了常數(shù)項而分解成2,請將原多項式因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年,某市政府的一項實事工程就是由政府投入1 000萬元資金,對城區(qū)4萬戶家庭的老式水龍頭和13升抽水馬桶進行免費改造,某社區(qū)為配合政府完成該項工作,對社區(qū)內1 200戶家庭中的120戶進行了隨機抽樣調查,并匯總成下表:
改造情況 | 均不改造 | ||||||
改造水龍頭 | 改造馬桶 | ||||||
1個 | 2個 | 3個 | 4個 | 1個 | 2個 | ||
戶數(shù) | 20 | 31 | 28 | 21 | 12 | 69 | 2 |
(1)試估計該社區(qū)需要對水龍頭或馬桶進行改造的家庭共有___戶;
(2)改造后,一個水龍頭一年大概可節(jié)約5噸水,一個馬桶一年大約可節(jié)約15噸水,試估計該社區(qū)一年共可節(jié)約多少噸水?
(3)在抽樣的120戶家庭中,既要改造水龍頭又要改造馬桶的家庭共有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生課余活動情況,某校對參加繪畫、書法、舞蹈、樂器這四個課外興趣小組的人員分布情況進行抽樣調查,并根據收集的數(shù)據繪制了下面兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,解答下面的問題:
(1)此次共調查了多少名同學?
(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中書法部分的圓心角的度數(shù);
(3)如果該校共有1000名學生參加這4個課外興趣小組,而每個教師最多只能輔導本組的20名學生,估計每個興趣小組至少需要準備多少名教師?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如圖兩幅統(tǒng)計圖(不完整).
請你根據圖中所給的信息解答下列問題:
(1)這次測試,一共抽取了名學生;
(2)請將以上兩幅統(tǒng)計圖補充完整;(注:扇形圖補百分比,條形圖補“優(yōu)秀”人數(shù)與高度);
(3)若“一般”和“優(yōu)秀”均被視為達標成績,該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠C=90°,AB的垂直平分線MN交BC于點D.
(1)如果∠CAD=20°,求∠B的度數(shù);
(2)如果∠CAB=50°,求∠CAD的度數(shù);
(3)如果∠CAD:∠DAB=1:2,求∠CAB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人想共同承包一項工程,甲單獨做30天完成,乙單獨做20天完成,合同規(guī)定15天完成,若完不成視為違約,甲乙兩人經過商量后簽訂了該合同.
(1)正常情況下,甲乙兩人能否履行該合同?為什么?
(2)現(xiàn)在兩人合作了9天,因別處有急事,必需調走1人,問兩人能否違約?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com