【題目】如圖①,在△ABC中,∠BAC=90', AB=AC, AE是過點(diǎn)A的一條直線,且點(diǎn)B, CAE的異側(cè),BDAE于點(diǎn)D, CEAE于點(diǎn)E.

(1)求證: BD=DE +CE ;

(2)若當(dāng)直線AE旋轉(zhuǎn)到圖②位置時(shí),判斷BDDECE的數(shù)量關(guān)系,并說明理由.

【答案】1)詳見解析;(2BD=DE-CE,理由詳見解析.

【解析】

1)在直角三角形中,由題中條件可得∠ABDEAC,ABAC,則可判定RtBDARtAEC,由三角形全等可得三角形對(duì)應(yīng)邊相等,進(jìn)而通過線段之間的轉(zhuǎn)化,可得出結(jié)論;

2)由題中條件同(1)可證RtBDARtAEC,得出對(duì)應(yīng)線段相等,進(jìn)而可得線段之間的關(guān)系.

1)∵∠BAC90°,BDAE,CEAE,

∴∠ABD+∠BAD90°,∠BAD+∠EAC90,

∴∠ABD=∠EAC

RtBDARtAEC中,

RtBDARtAECAAS),

BDAEADCE,

BDAEADDEDE +CE

2BDDECE,

理由:∵∠BAC90°BDAE,CEAE

∴∠ABD+∠BAD90°,∠BAD+∠EAC90°,

∴∠ABD=∠EAC,

RtBDARtAEC中,

RtBDARtAECAAS),

BDAEADCE,

BDAEDEADDECE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)C表示數(shù)c,a是多項(xiàng)式2x24x+1的一次項(xiàng)系數(shù),b是最小的正整數(shù),單項(xiàng)式x2y4的次數(shù)為c.

(1)a=___,b=___c=___;

(2)若將數(shù)軸在點(diǎn)B處折疊,則點(diǎn)A與點(diǎn)C___重合(填“能”或“不能”)

(3)點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)C以每秒1個(gè)單位長度的速度向右運(yùn)動(dòng),同時(shí),點(diǎn)A和點(diǎn)B分別以每秒3個(gè)單位長度和2個(gè)單位長度的速度向左運(yùn)功,t分鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)B與點(diǎn)C之間的距離表示為BC,AB=___,BC=___(用含t的代數(shù)式表示);

(4)請(qǐng)問:3ABBC的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長都為 1,△ABC 的頂點(diǎn)都在格點(diǎn)上.

(1)判斷ABC 是什么形狀,并說明理由.

(2)ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在四邊形中,,,、分別是邊、上的點(diǎn),若,可求得、、之間的數(shù)量關(guān)系為______.(只思考解題思路,完成填空即可,不必書寫證明過程)

2)如圖2,在四邊形中,,,分別是邊、延長線上的點(diǎn),若,判斷、之間的數(shù)量關(guān)系還成立嗎,若成立,請(qǐng)完成證明,若不成立,請(qǐng)說明理由.(可借鑒第(1)問的解題經(jīng)驗(yàn))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E

1)求證:①△ADC≌△CEB②DE=AD+BE

2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),DE、AD、BE又怎樣的關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 直線MN與直線PQ垂直相交于O,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng).

1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)AB在運(yùn)動(dòng)的過程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值;

2)如圖2,延長BAG,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線相交于E、F,則∠EAF=______°;在AEF中,如果有一個(gè)角是另一個(gè)角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)表示的數(shù)是,點(diǎn)表示的數(shù)是,則線段的長表示為.例如:數(shù)軸上點(diǎn)表示的數(shù)是5,點(diǎn)表示的數(shù)是2,則線段的長表示為

1)點(diǎn)表示的數(shù)是3,線段的長可表示為______

2)若,______

3)數(shù)軸上的任意一點(diǎn)表示的數(shù)是,且的最小值為5,若,則的值為______

4)如圖,在數(shù)軸上點(diǎn)在點(diǎn)的右邊,,若代數(shù)式互為相反數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,∠BAC=58°,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠BEO的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠E=F=90°,∠B=C,AE=AF,下列結(jié)論不正確的結(jié)論是(

A.CD=DN;B.1=2C.BE=CF;D.ACN≌△ABM

查看答案和解析>>

同步練習(xí)冊(cè)答案