為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?

【答案】分析:在不違反規(guī)定的情況下,需使陽光能照到舊樓的一樓;據(jù)此構造Rt△DCE,其中有CE=30米,∠DCE=30°,解三角形可得DE的高度,再由DB=BE+ED可計算出新建樓房的最高高度.
解答:解:過點C作CE⊥BD于E.
∵AB=40米,
∴CE=40米,
∵陽光入射角為30°,
∴∠DCE=30°,
在Rt△DCE中tan∠DCE=
,
∴DE=40×=米,
∵AC=BE=1米,
∴DB=BE+ED=1+=米.
答:新建樓房最高為米.
點評:本題考查了平行投影特點:在同一時刻,不同物體的物高和影長成比例.需注意通過投影的知識結合圖形相似的性質巧妙地求解或解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再精英家教網(wǎng)建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40 m,中午12時不能擋光.如圖9-59,某舊樓的一樓窗臺高1 m,要在此樓正南方40 m處再建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?(結果精確到1 m.≈1.732,≈1.414)

圖9-59

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年貴州省畢節(jié)地區(qū)太來中學九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《投影與視圖》(01)(解析版) 題型:解答題

(2008•黔東南州)為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?

查看答案和解析>>

同步練習冊答案