整數(shù)x,x1,x2,x3,…,x2002,x2003滿(mǎn)足條件:x=0,|x1|=|x+1|,|x2|=|x1+1|,|x3|=|x2+1|,…,|x2003|=|x2002+1|,
求:|x1+x2+x3+…+x2002+x2003|的最小值.
【答案】分析:將各等式進(jìn)行平方運(yùn)算,可去掉絕對(duì)值,表示出x20032,然后進(jìn)行化簡(jiǎn)運(yùn)算即可得出答案.根據(jù)已知得出當(dāng)x=x2=x4=x1960=0,x1=x3=x5=x1959=-1,x1961=1,x1962=2,x1963=3,x2003=43時(shí),等號(hào)成立進(jìn)而求出即可.
解答:解:由已知得:
,
于是x20032=x2+2(x+x1+x2+x2002)+2003,
又∵x=0,
∴2(x1+x2+x2003)=x20032+2x2003-2003=(x2003+1)2-2004,
即|x1+x2+x3+…+x2002+x2003|=|(x2003+1)2-2004|.
由于x1+x2+x3+…+x2002+x2003為整數(shù),則x2003+1是偶數(shù),
比較|442-2004|與|462-2004|的大小,可得:
|x1+x2+x3+…+x2002+x2003|≥|442-2004|=34.
當(dāng)x=x2=x4=x1960=0,x1=x3=x5=x1959=-1,x1961=1,x1962=2,x1963=3,x2003=43時(shí),等號(hào)成立.
所以|x1+x2+x3+…+x2002+x2003|的最小值為34.
點(diǎn)評(píng):此題考查了含有絕對(duì)值的函數(shù)最值問(wèn)題,雖然以計(jì)算為載體,但首先要有試驗(yàn)觀(guān)察和分情況討論的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:關(guān)于x的一元二次方程kx2+2x+2-k=0.
(1)若原方程有實(shí)數(shù)根,求k的取值范圍;
(2)設(shè)原方程的兩個(gè)實(shí)數(shù)根分別為x1,x2
①當(dāng)k取哪些整數(shù)時(shí),x1,x2均為整數(shù);
②利用圖象,估算關(guān)于k的方程x1+x2+k-1=0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

整數(shù)x0,x1,x2,x3,…,x2002,x2003滿(mǎn)足條件:x0=0,|x1|=|x0+1|,|x2|=|x1+1|,|x3|=|x2+1|,…,|x2003|=|x2002+1|,
求:|x1+x2+x3+…+x2002+x2003|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•西城區(qū)模擬)如圖,平面直角坐標(biāo)系xOy中,點(diǎn)pn(xn,yn)在雙曲線(xiàn)y=
6
x
上(n,xn,yn都是正整數(shù),且x1<x2<x3<…<xn).拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)(0,3),(-2,3),(1,0)三點(diǎn).
x          
y          
(1)求拋物線(xiàn)y=ax2+bx+c的解析式并在坐標(biāo)系中畫(huà)出它的圖象;
(2)直接寫(xiě)出點(diǎn)pn(xn,yn)的坐標(biāo),并寫(xiě)出pn中任意兩點(diǎn)所確定的不同直線(xiàn)的條數(shù);
(3)從(2)中得到的所有直線(xiàn)中隨機(jī)(任意)取出一條,利用圖象求取出的直線(xiàn)與拋物線(xiàn)有公共點(diǎn)的概率;
(4)設(shè)拋物線(xiàn)y=ax2+bx+c與x軸的交點(diǎn)分別為A,B(A在B左側(cè)),將拋物線(xiàn)y=ax2+bx+c向上平移,平移后的拋物線(xiàn)與x軸的交點(diǎn)分別記為C,D(C在D左側(cè)),求
SP1CB
SP1AD
值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程kx2+2x+2-k=0.
(1)若原方程有兩個(gè)實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)上述方程的兩個(gè)實(shí)數(shù)根分別為x1、x2,求:當(dāng)k取哪些整數(shù)時(shí),x1、x2均為整數(shù);
(3)設(shè)上述方程的兩個(gè)實(shí)數(shù)根分別為x1、x2,若|x1-x2|=2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先觀(guān)察:
求適合等式x1+x2+x3+…+x2012=x1x2x3…x2012的正整數(shù)解.
分析:這2012個(gè)正整數(shù)的和正好與它們的積相等,要確定每一個(gè)正整數(shù)的值,我們采用經(jīng)驗(yàn)歸納法從2個(gè),3個(gè),4個(gè)…直到發(fā)現(xiàn)規(guī)律為止.
解:x1+x2=x1x2的正整數(shù)解是x1=x2=2
x1+x2+x3=x1x2x3的正整數(shù)解是x1=1,x2=2,x3=3
x1+x2+x3+x4=x1x2x3x4的正整數(shù)解是x1=x2=1,x3=2,x4=4
x1+x2+x3+x4+x5=x1x2x3x4x5的正整數(shù)解是x1=x2=x3=1,x4=2,x5=5  …
請(qǐng)你按此規(guī)律猜想:等式x1+x2+x3+…+x2012=x1x2x3…x2012的正整數(shù)解為x1、x2、x3、…x2012,則x2011+x2012=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案