【題目】太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.
請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形是正方形,點的坐標為,弧是以點為圓心,為半徑的圓;弧是以點為圓心,為半徑的圓。换是以點為圓心,為半徑的圓;弧是以點為圓心,為半徑的圓弧,繼續(xù)以點為圓心,按上述作法得到的曲線…,稱為正方形的“漸開線”,則點的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)的圖象和性質.小奧根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象和性質進行了探究.下面是小奧的探究過程,請補充完整:
(1)函數(shù)的自變量的取值范圍是_________;
(2)下表是與的幾組對應值,則的值為______,的值為______;
… | 1 | 2 | 3 | 4 | 5 | … | ||||||||
… | 2 | … |
(3)如右圖,在平面直角坐標系中,描出了以上表中各組對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內的最低點的坐標是.結合函數(shù)圖象,寫出該函數(shù)的其他兩條性質:①_________,②_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在反比例函數(shù)的圖象上有一動點,連接并延長交圖象的另一支于點,在第二象限內有一點,滿足,當點運動時,點始終在函數(shù)的圖象上運動,若,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提升干線公路美化度,相關部門擬定派一個工程隊對39000米的公路進行路面“白改黑”工程.該工程隊計劃使用一大一小兩種型號設備交替的方式施工,原計劃小型設備每小時鋪設路面30米,大型設備每小時鋪設路面60米
(1)由于小型設備工作效率較低,該工程隊計劃使用大型設備的時間比使用小型設備的時間多,當這個工程完工時,小型設備的使用時間至少為多少小時?
(2)通過勘察、又新增了部分支線公路美化,結果此工程的實際施工里程比最初擬定的最少里程39000米多了9000米,于是在實際施工中,小型設備在鋪設公路效率不變的情況下,使用時間比(1)中的最小值多,同時,因為工人操作大型設備不夠熟練,使得大型設備鋪設公路的效率比原計劃下降了,使用時間比(1)中大型設備使用的最短時間多,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結論:①AM=MN;
②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.
(1)求m的值及一次函數(shù)解析式;
(2)P是線段AB上的一點,連接PC、PD,若△PCA和△PDB面積相等,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MN與AB在同一鉛直平面內,當無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com