如圖,OABC是平行四邊形,對角線OB在軸正半軸上,位于第一象限的點A和第二象限的點C分別在雙曲線y=和y=的一支上,分別過點A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:
①=;
②陰影部分面積是(k1+k2);
③當∠AOC=90°時,|k1|=|k2|;
④若OABC是菱形,則兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.
其中正確的結(jié)論是 (把所有正確的結(jié)論的序號都填上).
①④
解:作AE⊥y軸于E,CF⊥y軸于F,如圖,
∵四邊形OABC是平行四邊形,
∴S△AOB=S△COB,
∴AE=CF,
∴OM=ON,
∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,
∴=,所以①正確;
∵S△AOM=|k1|,S△CON=|k2|,
∴S陰影部分=S△AOM+S△CON=(|k1|+|k2|),
而k1>0,k2<0,
∴S陰影部分=(k1﹣k2),所以②錯誤;
當∠AOC=90°,
∴四邊形OABC是矩形,
∴不能確定OA與OC相等,
而OM=ON,
∴不能判斷△AOM≌△CNO,
∴不能判斷AM=CN,
∴不能確定|k1|=|k2|,所以③錯誤;
若OABC是菱形,則OA=OC,
而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,
∴|k1|=|k2|,
∴k1=﹣k2,
∴兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱,所以④正確.
故答案為①④.
科目:初中數(shù)學 來源: 題型:
如圖,已知l1⊥l2,⊙O與l1,l2都相切,⊙O的半徑為2cm.矩形ABCD的邊AD,AB分別與l1,l2重合,AB=4 cm,AD=4cm.若⊙O與矩形ABCD沿l1同時向右移動,⊙O的移動速度為3cm/s,矩形ABCD的移動速度為4cm/s,設(shè)移動時間為t(s).
(1)如圖①,連接OA,AC,則∠OAC的度數(shù)為 °;
(2)如圖②,兩個圖形移動一段時間后,⊙O到達⊙O1的位置,矩形ABCD到達A1B1C1D1的位置,此時點O1,A1,C1恰好在同一直線上,求圓心O移動的距離(即OO1的長);
(3)在移動過程中,圓心O到矩形對角線AC所在直線的距離在不斷變化,設(shè)該距離為d(cm).當d<2時,求t的取值范圍.(解答時可以利用備用圖畫出相關(guān)示意圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
下列命題是假命題的是( 。
| A. | 四個角相等的四邊形是矩形 | B. | 對角線相等的平行四邊形是矩形 |
| C. | 對角線垂直的四邊形是菱形 | D. | 對角線垂直的平行四邊形是菱形 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖的⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,過點D、A分別作⊙O的切線交于點G,并與AB延長線交于點E.
(1)求證:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半徑為3,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
圖1中的中國結(jié)掛件是由四個相同的菱形在頂點處依次串接而成,每相鄰兩個菱形均成30度的夾角,示意圖如圖2所示。在圖2中,每個菱形的邊長為10cm,銳角為60度。
(1)連接CD、EB,猜想它們的位置關(guān)系并加以證明;
(2)求A、B兩點之間的距離(結(jié)果取整數(shù),可以使用計算器)
(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com