【題目】(1)敘述并證明三角形內(nèi)角和定理(證明用圖 1);
(2)如圖 2 是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度數(shù).
【答案】(1)見解析;(2) 180°
【解析】
(1)先寫出已知、求證,再畫圖,然后證明.過(guò)點(diǎn)A作MN∥BC,利用MN∥BC,可得∠B=∠MAB,∠C=∠NAC,而∠MAB+∠NAC+∠BAC=180°,利用等量代換可證∠BAC+∠B+∠C=180°;
(2)先根據(jù)△外角的性質(zhì)得出∠D+∠G=∠CMD,∠A+∠E=∠DMN,∠B+∠F=∠MNC,再由三角形內(nèi)角和定理即可得出結(jié)論.
(1)證明:如圖,過(guò)點(diǎn) A 作直線 MN,使 MN∥BC,,
∵MN∥BC,
∴∠B=∠MAB,∠C=∠NAC(兩直線平行,內(nèi)錯(cuò)角相等)
∵∠MAB+∠NAC+∠BAC=180°(平角定義)
∴∠B+∠C+∠BAC=180°(等量代換)
∴∠BAC+∠B+∠C=180°.
(2)解:如圖 2,
∵∠A+∠E=∠DME,∠G+∠D=∠ANG,∠C+∠F=∠BHC,
∵∠DME+∠ANG=∠BPH,
∴∠A+∠E+∠G+∠D=∠BPH,
∵∠B+∠BHC+∠BPH=180°,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,2),點(diǎn)B的坐標(biāo)為(6,6),拋物線經(jīng)過(guò)A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)點(diǎn)F為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)N在y軸右側(cè)),連接ON、BN,當(dāng)點(diǎn)F在線段OB上運(yùn)動(dòng)時(shí),求△BON面積的最大值,并求出此時(shí)點(diǎn)N的坐標(biāo);
(4)連接AN,當(dāng)△BON面積最大時(shí),在坐標(biāo)平面內(nèi)求使得△BOP與△OAN相似(點(diǎn)B、O、P分別與點(diǎn)O、A、N對(duì)應(yīng))的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,班主任王老師叫班長(zhǎng)就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計(jì),圖1和圖2是他通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,計(jì)算出“步行”部分所對(duì)應(yīng)的圓心角的度數(shù);
(2)求該班共有多少名學(xué)生;
(3)在圖1中,將表示“乘車”的部分補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班男、女同學(xué)分別參加植樹活動(dòng),要求男、女同學(xué)各植8行樹,男同學(xué)植的樹比女同學(xué)植的樹多,如果每行都比預(yù)定的多植一棵樹,那么男、女同學(xué)植樹的數(shù)目都超過(guò)100棵;如果每行都比預(yù)定的少植一棵樹,那么男、女同學(xué)植樹的數(shù)目都達(dá)不到100棵,這樣原來(lái)預(yù)定男同學(xué)植樹______棵,女同學(xué)植樹______棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝銷售店到生產(chǎn)廠家選購(gòu)A、B兩種品牌的服裝,若購(gòu)進(jìn)A品牌服裝3套,B品牌服裝4套,共需600元;若購(gòu)進(jìn)A品牌服裝2套,B品牌服裝3套,共需425元.
(1)求A、B兩種品牌的服裝每套進(jìn)價(jià)分別為多少元?
(2)若A品牌服裝每套售價(jià)為130元,B品牌服裝每套售價(jià)為100元,根據(jù)市場(chǎng)的需求,現(xiàn)決定購(gòu)進(jìn)B品牌服裝數(shù)量比A品牌服裝數(shù)量的2倍還多3套.如果購(gòu)進(jìn)B品牌服裝數(shù)量不多于39套,這樣服裝全部售出后,就能使獲利總額不少于1335元,問(wèn)共有幾種進(jìn)貨方案?如何進(jìn)貨?(注:利潤(rùn)=售價(jià)-進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD,(點(diǎn)D在⊙O外)AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若DC、AB的延長(zhǎng)線相交于點(diǎn)E,且DE=12,AD=9,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,BD與CE交于點(diǎn)O,且AO平分∠BAC.
(1)圖中有多少對(duì)全等三角形?請(qǐng)你一一列舉出來(lái)(不要求說(shuō)明理由).
(2)小明說(shuō):欲說(shuō)明BE=CD,可先說(shuō)明△AOE≌△AOD得到AE=AD,再說(shuō)明△ADB≌△AEC得到AB=AC,然后利用等式的性質(zhì)即可得到BE=CD,請(qǐng)問(wèn)他的說(shuō)法正確嗎?如果不正確,請(qǐng)說(shuō)明理由;如果正確,請(qǐng)按他的思路寫出推導(dǎo)過(guò)程.
(3)要得到BE=CD,你還有其他的思路嗎?請(qǐng)仿照小明的說(shuō)法具體說(shuō)一說(shuō)你的想法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=∠2,DE⊥BC,AB⊥BC,試說(shuō)明:∠A=∠3.
解:因?yàn)?/span>DE⊥BC,AB⊥BC(已知),
所以∠DEC=∠ABC=90°(____________),
所以DE∥AB(____________________),
所以∠2=________(____________________),
∠1=________(____________________).
因?yàn)椤?/span>1=∠2(已知),
所以∠A=∠3(等量代換).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com