已知:如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.
若∠1=60°,AE=1.
(1)求∠2、∠3的度數(shù);
(2)求長方形紙片ABCD的面積S.

【答案】分析:(1)根據(jù)AD∥BC,∠1與∠2是內(nèi)錯角,因而就可以求得∠2,根據(jù)圖形的折疊的定義,可以得到∠4=∠2,進而就可以求的∠3的度數(shù);
(2)已知AE=1,在直角△ABE中,根據(jù)三角函數(shù)就可以求出AB、BE的長,BE=DE,則可以求出AD的長,就可以得到矩形的面積.
解答:解:(1)由AD∥BC,
∴∠2=∠1=60°;
又∠4=∠2=60°,
∴∠3=180-60-60=60°.

(2)在直角△ABE中,由(1)知∠3=60°,
∴∠5=90-60=30°;
∴BE=2AE=2,
AB==;
∴S=AB•AD=AB(AE+ED)=AB(AE+BE)=(1+2)=3
點評:已知圖形的折疊就是已知兩個圖形全等,要注意弄清題目中的已知條件.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,BE=2.
(1)求∠2、∠3的度數(shù);
(2)求長方形紙片ABCD的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,把長方形紙片ABCD沿EF折疊后,點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度數(shù);
(2)若長方形PQRS的頂點分別在AB、AE和BE上,試求正方形PQRS的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,把長方形紙片ABCD沿EF折疊,使D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆云南麻栗坡董干中學初二下學期期末教師命題數(shù)學卷一(解析版) 題型:解答題

已知:如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1.

(1)求∠2、∠3的度數(shù);

(2)求長方形紙片ABCD的面積S.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

作業(yè)寶已知:如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,BE=2.
(1)求∠2、∠3的度數(shù);
(2)求長方形紙片ABCD的面積S.

查看答案和解析>>

同步練習冊答案