已知,⊙O1與⊙O2外切,⊙O1的半徑R=2,設(shè)⊙O2的半徑為r,
(1)如果⊙O1與⊙O2的圓心距d=4,求r的值;
(2)如果⊙O1與⊙O2的公切線中有兩條互相垂直,并且r≤R,求r的值.
分析:(1)根據(jù)兩圓外切,圓心距等于兩圓半徑之和進(jìn)行計(jì)算;
(2)根據(jù)切線長(zhǎng)定理和切線的性質(zhì)定理發(fā)現(xiàn)兩個(gè)等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得到方程進(jìn)行計(jì)算.
解答:解:(1)如圖,根據(jù)相外切兩圓的性質(zhì)得出:r=4-2=2;

(2)如圖:根據(jù)切線長(zhǎng)定理得到等腰直角三角形,
則有2+r=
2
(2-r):
r=6-4
2
;
精英家教網(wǎng)
當(dāng)是第二情況時(shí),當(dāng)R=r時(shí),如圖,此時(shí)四邊形AO1O2B、AO1CD、DCO2B都是矩形,
即此時(shí)R=r=2;
即r=6-4
2
或2.
點(diǎn)評(píng):考查了兩圓的位置關(guān)系與數(shù)量之間的聯(lián)系,能夠熟練運(yùn)用切線的性質(zhì)定理和切線長(zhǎng)定理.根據(jù)等腰直角三角形的性質(zhì)找到線段之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,已知:⊙O1與⊙O2是等圓,它們相交于A、B兩點(diǎn),O2在⊙O1上,AC是⊙O2的直徑,直線CB交⊙O1于D,E為AB延長(zhǎng)線上一點(diǎn),連接DE.
(1)請(qǐng)你連接AD,證明:AD是⊙O1的直徑;
(2)若∠E=60°,求證:DE是⊙O1的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:⊙O1與⊙O2相交于A、B兩點(diǎn),⊙O1的切線AC交⊙O2于點(diǎn)C.直線EF過點(diǎn)B交⊙O1于點(diǎn)E,交⊙O2于點(diǎn)F.精英家教網(wǎng)
(1)若直線EF交弦AC于點(diǎn)K時(shí)(如圖1).求證:AE∥CF;
(2)若直線EF交弦AC的延長(zhǎng)線于點(diǎn)時(shí)(如圖2).求證:DA•DF=DC•DE;
(3)若直線EF交弦AC的反向延長(zhǎng)線于點(diǎn)(在圖3自作),試判斷(1)、(2)中的結(jié)論是否成立并證明你的正確判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:⊙O1與⊙O2相交于點(diǎn)A、B,AC切⊙O2于點(diǎn)A,交⊙O1于點(diǎn)C.直線EF過點(diǎn)B,交⊙O1于點(diǎn)E,交⊙O2于點(diǎn)F.
(1)設(shè)直線EF交線段AC于點(diǎn)D(如圖1).
①若ED=12,DB=25,BF=11,求DA和DC的長(zhǎng);
②求證:AD•DE=CD•DF;
(2)當(dāng)直線EF繞點(diǎn)B旋轉(zhuǎn)交線段AC的延長(zhǎng)線于點(diǎn)D時(shí)(如圖2),試問AD•DE=CD•DF是否仍然成立?證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•青島)已知,⊙O1與⊙O2的半徑分別是4和6,O1O2=2,則⊙O1與⊙O2的位置關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知圓O1與⊙O2外切,它們的圓心距為16cm,⊙O1的半徑是12cm,則⊙O2的半徑是
4
4
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案