如圖所示,在□ABCD中,E、F是對(duì)角線AC上兩點(diǎn),且AE = CF.求證:四邊形DEBF是平行四邊形.
證明:連續(xù)BD交AC于點(diǎn)O
∵ 四邊形ABCD是平行四邊形
∴ AO = CD,DO = BO
∵ AE = CF
∴ AO – AE =" CO" – CF,即EO = FO
∴ 四邊形EBFD是平等四邊形
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•舟山)以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點(diǎn)分別為E、F、G、H,順次連接這四個(gè)點(diǎn),得四邊形EFGH.
(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當(dāng)四邊形ABCD為矩形時(shí),請(qǐng)判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時(shí),設(shè)∠ADC=α(0°<α<90°),
①試用含α的代數(shù)式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題8分)如圖,四邊形中,,平分,.

(1)求證:四邊形是菱形;
(2)若點(diǎn)的中點(diǎn),試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,菱形的對(duì)角線相交于點(diǎn)請(qǐng)你添加一個(gè)條件:   ,使其為正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用如圖所示的正方形和長(zhǎng)方形卡片若干張,拼成一個(gè)邊長(zhǎng)為a+2b的正方形,需要B類卡片___張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在梯形ABCD中,AD∥BC,AB = CD,,BD平分,如果這個(gè)梯形的周長(zhǎng)為30,則AB的長(zhǎng)為(   )
A.4B.5 C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,點(diǎn)E、F分別是邊AD、CD的中點(diǎn).求證:BE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,口ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE向上翻折,點(diǎn)A正好落在CD上的點(diǎn)F,若△FDE的周長(zhǎng)為8,△FCB的周長(zhǎng)為22,則FC的長(zhǎng)為_

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖1,在等腰梯形ABCD中,AB∥CD,AD=BC,DC=2,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB、BA運(yùn)動(dòng)至點(diǎn)A停止.設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△DCP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則等腰梯形ABCD的面積是                         (    )

A.12               B.18              C.2                D.21

查看答案和解析>>

同步練習(xí)冊(cè)答案