如圖,在矩形ABCD中,AB=9,BC=3,點E是沿A→B方向運動,點F是沿A→D→C方向運動.現(xiàn)E、F兩點同時出發(fā)勻速運動,設(shè)點E的運動速度為每秒1個單位長度,點F的運動速度為每秒3個單位長度,當(dāng)點F運動到C點時,點E立即停止運動.連接EF,設(shè)點E的運動時間為x秒,EF的長度為y個單位長度,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )
A.B.C.D.
C.

試題分析:分兩種情況討論:
①當(dāng)點E是沿A→B方向運動,點F是沿A→D方向運動時,此時,,AE=x,AF=3x,
.
②當(dāng)點E是沿A→B方向運動,點F是沿D→C方向運動時,如答圖,過點F作FH⊥AB于點H,,AH=, HE=,
.
,
∴當(dāng)時,有最小值,即y有最小值.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出一個正方形.你能否在該矩形中裁剪出一個面積最大的正方形,最大面積是多少?說明理由;
(2)請用矩形紙片ABCD剪拼成一個面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點都在網(wǎng)格的格點上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線(b,c均為常數(shù))與x軸交于兩點,與y軸交于點
(1)求該拋物線對應(yīng)的函數(shù)表達式;
(2)若P是拋物線上一點,且點P到拋物線的對稱軸的距離為3,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點A、B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設(shè)△PDE的周長為l,點P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當(dāng)=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C.
(1)直接寫出A、D、C三點的坐標(biāo);
(2)在拋物線的對稱軸上找一點M,使得MD+MC的值最小,并求出點M的坐標(biāo);
(3)設(shè)點C關(guān)于拋物線對稱的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,四邊形OBCD是邊長為4的正方形,平行于對角線BD的直線l從O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,運動到直線l與正方形沒有交點為止.設(shè)直線l掃過正方形OBCD的面積為S,直線l運動的時間為t(秒),下列能反映S與t之間函數(shù)關(guān)系的圖象是( 。

                         
A                  B                    C                   D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某公司在甲、乙兩地同時銷售某種品牌的汽車.已知在甲、乙兩地的銷售利潤y(單位:萬元)與銷售量x(單位:輛)之間分別滿足:,,若該公司在甲,乙兩地共銷售15輛該品牌的汽車,則能獲得的最大利潤為
A.30萬元B.40萬元C.45萬元D.46萬元

查看答案和解析>>

同步練習(xí)冊答案