【題目】如圖,一名男生推鉛球,鉛球行進的高度y(m)與水平距離x(m)之間的關系是二次函數(shù)的關系.鉛球行進起點的高度為m,行進到水平距離為4m時達到最高處,最大高度為3m.

(1)求二次函數(shù)的解析式(化成一般形式);

(2)求鉛球推出的距離.

【答案】(1)y==﹣x2+x+;(2)10m.

【解析】

1)把(0,)代入y=ax42+3求出a的值即可;

2)解一元二次方程即可

設二次函數(shù)的解析式為y=ax42+3,把(0,)代入y=ax42+3,解得a=﹣,則二次函數(shù)的解析式為y=﹣x42+3=﹣x2+x+;

2x2+x+=0,解得x1=﹣2(舍去),x2=10,則鉛球推出的距離為10m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,垂足分別是

1)證明:

2)連接,猜想的關系?并證明你的猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F(xiàn),已知AE=3,BF=5

(1)求BC的長;

(2)如果兩條對角線長的和是20,求三角形AOD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,OP5,M,N分別是射線OAOB上的動點,若△PMN周長的最小值為5,則∠AOB的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B,C,E是同一直線上的三個點,四邊形ABCD與四邊形CEFG都是正方形.連接BG,DE.

(1)觀察猜想BG與DE之間的大小關系,并證明你的結論.

(2)圖中是否存在通過旋轉能夠互相重合的兩個三角形?若存在,請指出,并說出旋轉過程;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工藝品專賣店計劃購進甲、乙兩種不同類型的木雕工藝品,已知件甲種工藝品的進價與件乙種工藝品的進價的和為元,件甲種工藝品的進價與件乙種工藝品的進價的和為元.

1)求每件甲種、乙種工藝品的進價分別是多少元;

2)如果購進甲種工藝品有優(yōu)惠,優(yōu)惠方法是:購進甲種工藝品超過件,超出部分可以享受折優(yōu)惠.若購進為正整數(shù))件甲種工藝品需要花費元,請你寫出的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:如圖,將圓形轉盤平均分成四個扇形,分別標上1,2,3,4四個數(shù)字,抽獎者連續(xù)轉動轉盤兩次,當每次轉盤停止后指針所指扇形內(nèi)的數(shù)字為每次所得的數(shù)(若指針指在分界線時重轉);當兩次所得數(shù)字之和為8時,返現(xiàn)金20元;當兩次所得數(shù)字之和為7時,返現(xiàn)金15元;當兩次所得數(shù)字之和為6時,返現(xiàn)金10元.某顧客參加一次抽獎,能獲得返還現(xiàn)金的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長方形零件PQMN,使長方形PQMN的邊QM在BC上,其余兩個頂點P,N分別在AB,AC上,求這個長方形零件PQMN面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BFDE相交于點G,連接CGBD相交于點H.給出如下幾個結論:

①∠ADE=DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;CGBD一定不垂直;⑤∠BGE=60°.其中正確的結論個數(shù)為( 。

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

同步練習冊答案