在上題中,若六個(gè)條件中只滿足其中的一個(gè)或兩個(gè),那么對(duì)這兩個(gè)三角形判斷正確的是

[  ]

A.△ABC與△一定不全等

B.△ABC與△一定全等

C.△ABC與△不一定全等

D.若兩組邊相等,那么△ABC與△一定全等

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)“等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合”的定理是將“等腰三角形”作為一個(gè)不變的已知條件參與組合得到的三個(gè)真命題,在學(xué)習(xí)了等腰三角形的判定后,可將該定理作如下的引伸.
如圖,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意兩組成立,可推出其余兩組成立.
顯然以上六個(gè)命題中,有三個(gè)就是“等腰三角形的三線合一定理”,而其它三個(gè)是否成立,請(qǐng)你證明其中一個(gè).(注意此題的得分要依題目本身證明的難易而定,請(qǐng)你選擇)
已知:
 
;
求證:
 

證明:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

“等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合”的定理是將“等腰三角形”作為一個(gè)不變的已知條件參與組合得到的三個(gè)真命題,在學(xué)習(xí)了等腰三角形的判定后,可將該定理作如下的引伸.
如圖,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意兩組成立,可推出其余兩組成立.
顯然以上六個(gè)命題中,有三個(gè)就是“等腰三角形的三線合一定理”,而其它三個(gè)是否成立,請(qǐng)你證明其中一個(gè).(注意此題的得分要依題目本身證明的難易而定,請(qǐng)你選擇)
已知:________;
求證:________;
證明:________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合”的定理是將“等腰三角形”作為一個(gè)不變的已知條件參與組合得到的三個(gè)真命題,在學(xué)習(xí)了等腰三角形的判定后,可將該定理作如下的引伸.
如圖,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意兩組成立,可推出其余兩組成立.
顯然以上六個(gè)命題中,有三個(gè)就是“等腰三角形的三線合一定理”,而其它三個(gè)是否成立,請(qǐng)你證明其中一個(gè).(注意此題的得分要依題目本身證明的難易而定,請(qǐng)你選擇)
已知:______;
求證:______;
證明:______.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:模擬題 題型:解答題

有些幾何圖形的面積,直接計(jì)算往往難以下手或非常繁雜,若能根據(jù)題設(shè)條件和圖形特征恰當(dāng)?shù)貙⑵溲a(bǔ)成特殊圖形,再根據(jù)特殊圖形的性質(zhì)解答,則可以使問題簡(jiǎn)捷獲解,例如下面的第(1)、(2)小題就分別可以補(bǔ)成直角三角形、等腰三角形進(jìn)行求解(如圖),請(qǐng)按所給的補(bǔ)形后的圖形分別求解(1)、(2),在此基礎(chǔ)上求解(3)
(1) 如圖1,在四邊形中,,,∠A=60°,∠B﹦∠D﹦90°, 求四邊形的面積;
(2) 如圖2,在梯形中,AB∥CD,CE是∠的平分線,且CE⊥AD,,CE把梯形分成面積為S2的兩部分,若﹦1,求的值
(3) 如圖3,一個(gè)六邊形的六個(gè)內(nèi)角都是120°,連續(xù)四邊的長(zhǎng)依次是1、3、3、2, 求該六邊形的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案