(2012•房山區(qū)一模)已知:關(guān)于x的方程x2+(k-2)x+k-3=0
(1)求證:方程x2+(k-2)x+k-3=0總有實數(shù)根;
(2)若方程x2+(k-2)x+k-3=0有一根大于5且小于7,求k的整數(shù)值;
(3)在(2)的條件下,對于一次函數(shù)y1=x+b和二次函數(shù)y2=x2+(k-2)x+k-3,當(dāng)-1<x<7時,有y1>y2,求b的取值范圍.
分析:(1)利用一元二次方程根的判別式進行判定即可;
(2)解方程得到方程的兩個根,然后根據(jù)含有字母k的根即為大于5且小于7的根,列出不等式組,求解得到k的取值范圍,再寫出整數(shù)值即可;
(3)把k值代入得到二次函數(shù)解析式,再根據(jù)y1>y2整理出關(guān)于x的一元二次不等式,然后利用二次函數(shù)的性質(zhì)可知,二次函數(shù)與x軸的交點橫坐標在-1到7之外,再根據(jù)兩個負數(shù)相比較,絕對值大的反而小列出不等式求解即可.
解答:(1)證明:△=(k-2)2-4(k-3),
=k2-4k+4-4k+12,
=k2-8k+16,
=(k-4)2,
∵(k-4)2≥0,
∴此方程總有實根;

(2)解:解得方程兩根為,x1=-1,x2=3-k,
∵方程有一根大于5且小于7,
∴5<3-k<7,
即-7<k-3<-5,
解得-4<k<-2,
∵k為整數(shù),
∴k=-3;

(3)解:由 (2)知k=-3,
∴y2=x2-5x-6,
∵y1>y2,
∴y2-y1<0,
即x2-6x-6-b<0,
∵在-1<x<7時,有y1>y2,
∴x2-6x-6-b=0的兩個根在-1到7之間,
即y=x2-6x-6-b與x軸的交點在-1到7之外,
∴兩根之積-6-b<-1×7,
解得b>1.
點評:本題是二次函數(shù)綜合題型,主要涉及了一元二次方程的根的情況的判定,解一元二次方程,解不等式組,以及利用二次函數(shù)解一元二次不等式的方法,(3)根據(jù)x的取值范圍判斷出二次函數(shù)與x軸的交點在-1到7之外是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)如圖,點F在線段AB上,AD∥BC,AC交DF于點E,∠BAC=∠ADF,AE=BC.
求證:△ACD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)下列每兩個數(shù)中,互為相反數(shù)的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)已知某多邊形的每一個外角都是72°,則它的邊數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)計算:(
1
5
)-1
-4cos45°+|1-
2
|
-(-2012)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)如圖1,在△ABC中,∠ACB=90°,AC=BC=
5
,以點B為圓心,以
2
為半徑作圓.
(1)設(shè)點P為⊙B上的一個動點,線段CP繞著點C順時針旋轉(zhuǎn)90°,得到線段CD,連接DA,DB,PB,如圖2.求證:AD=BP;
(2)在(1)的條件下,若∠CPB=135°,則BD=
2
2
或2
2
2
或2

(3)在(1)的條件下,當(dāng)∠PBC=
135
135
° 時,BD有最大值,且最大值為
10
+
2
10
+
2
;當(dāng)∠PBC=
45
45
° 時,BD有最小值,且最小值為
10
-
2
10
-
2

查看答案和解析>>

同步練習(xí)冊答案