【題目】已知:如圖,△ABC中,AB=AC,D、E分別在AC、AB上,且BD=BC,AD=DE=EB, 則∠A的度數(shù)等于( )
A. 36°B. 40°C. 45°D. 50°
【答案】C
【解析】
根據(jù)同一個(gè)三角形中等邊對(duì)等角的性質(zhì),設(shè)∠ABD=x,結(jié)合三角形外角的性質(zhì),則可用x的代數(shù)式表示∠A、∠ABC、∠C,再在△ABC中,運(yùn)用三角形的內(nèi)角和為180°,可求∠A的度數(shù).
∵DE=EB,
∴設(shè)∠BDE=∠ABD=x,
∴∠AED=∠BDE+∠ABD=2x,
∵AD=DE,
∴∠A=∠AED=2x,
∴∠BDC=∠A+∠ABD=3x,
∵BD=BC,
∴∠C=∠BDC=3x,
∵AB=AC,
∴∠ABC=∠C=3x,
在△ABC中,3x+3x+2x=180°,
解得x=22.5°,
∴∠A=2x=22.5°×2=45°,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( )
①AD是∠BAC的平分線;
②∠ADC=60°;
③點(diǎn)D在AB的中垂線上;
④BD=2CD.
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的個(gè)數(shù)有( 。
①已知直角三角形的面積為2,兩直角邊的比為1:2,則斜邊長(zhǎng)為;
②直角三角形的最大邊長(zhǎng)為,最短邊長(zhǎng)為1,則另一邊長(zhǎng)為;
③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;
④等腰三角形面積為12,底邊上的高為4,則腰長(zhǎng)為5.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形 ABCD 中,放入六個(gè)形狀大小相同的長(zhǎng)方形,所標(biāo)尺寸如圖所示, 則圖中陰影部分面積為( )
A. 44cm2B. 36cm2C. 96 cm2D. 84cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)用14500元購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表(二)所示:
類別 | 成本價(jià)(元/箱) | 銷售價(jià)(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場(chǎng)售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園計(jì)劃在一個(gè)半徑為a米的圓形空地區(qū)域建綠化區(qū),現(xiàn)有兩種方案:方案一:如圖1,將圓四等分,中間建兩條互相垂直的柵欄,陰影部分種植草坪;方案二:建成如圖2所示的圓環(huán),其中小圓半徑剛好為大圓半徑的一半,陰影部分種植草坪.
(1)哪種方案中陰影部分的面積大?大多少平方米(結(jié)果保留π)?
(2)如圖3,在方案二中的環(huán)形區(qū)域再圍一個(gè)最大的圓形區(qū)域種植花卉,求圖3中所有圓的周長(zhǎng)之和(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是菱形ABCD的對(duì)角線AC上一動(dòng)點(diǎn),過(guò)P作垂直于AC的直線交菱形ABCD的邊于M、N兩點(diǎn),設(shè)AC=2,BD=1,AP=x,則△AMN的面積為y,則y關(guān)于x的函數(shù)圖象的大致形狀是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com