如圖,點(diǎn)A,B,C,D都在⊙O上,AC,BD相交于點(diǎn)E,則∠ABD=( )
A. ∠ACD B. ∠ADB C. ∠AED D. ∠ACB
A.
【解析】
試題分析:根據(jù)圓周角定理和三角形外角性質(zhì)逐一作出判斷
A、∵∠ABD對的弧是弧AD,∠ACD對的弧也是AD,
∴∠ABD=∠ACD. 故本選項(xiàng)正確.
B、∵∠ABD對的弧是弧AD,∠ADB對的弧也是AB,而已知沒有說弧AD=弧AB,
∴∠ABD和∠ACD不相等. 故本選項(xiàng)錯誤.
C、根據(jù)三角形外角性質(zhì)有∠AED>∠ABD. 故本選項(xiàng)錯誤.
D、∵∠ABD對的弧是弧AD,∠ACB對的弧也是AB,而已知沒有說弧AD=弧AB,
∴∠ABD和∠ACB不相等. 故本選項(xiàng)錯誤關(guān).
故選A.
考點(diǎn):1.圓周角定理;2. 三角形外角性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(湖南岳陽卷)數(shù)學(xué)(解析版) 題型:選擇題
已知扇形的圓心角為60°,半徑為1,則扇形的弧長為( 。
A. B.π C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(湖北宜昌卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)P(0,4),點(diǎn)A在線段OP上,點(diǎn)B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過點(diǎn)C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過O,C兩點(diǎn)的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△ ≌△BMC(不需證明);用含t的代數(shù)式表示A點(diǎn)縱坐標(biāo):A(0, ;
(2)求點(diǎn)C的坐標(biāo),并用含a,t的代數(shù)式表示b;
(3)當(dāng)t=1時,連接OD,若此時拋物線與線段OD只有唯一的公共點(diǎn)O,求a的取值范圍;
(4)當(dāng)拋物線開口向上,對稱軸是直線,頂點(diǎn)隨著t的增大向上移動時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(湖北宜昌卷)數(shù)學(xué)(解析版) 題型:選擇題
下列計(jì)算正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江舟山卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,A是拋物線上的一個動點(diǎn),且點(diǎn)A在第一象限內(nèi).AE⊥y軸于點(diǎn)E,點(diǎn)B坐標(biāo)為(O,2),直線AB交軸于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于y軸對稱,直線DE與AB相交于點(diǎn)F,連結(jié)BD.設(shè)線段AE的長為m,△BED的面積為S.
(1)當(dāng)時,求S的值.
(2)求S關(guān)于的函數(shù)解析式.
(3)①若S=時,求的值;
②當(dāng)m>2時,設(shè),猜想k與m的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江舟山卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長為16cm,則四邊形ABFD的周長為( )
(A)16cm (B)18cm (C)20cm (D)22cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江溫州卷)數(shù)學(xué)(解析版) 題型:填空題
請舉反例說明“對于任意實(shí)數(shù)的值總是正數(shù)”是假命題,你舉的反例是x= (寫出一個x的值即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com