【題目】探究題
(1)探究發(fā)現(xiàn):
下面是一道例題及其解答過程,請補充完整:
如圖①在等邊△ABC內(nèi)部,有一點P,若∠APB=150°.求證:AP2+BP2=CP2
證明:將△APC繞A點逆時針旋轉(zhuǎn)60°,得到△AP′B,連接PP′,則△APP′為等邊三角形
∴∠APP′=60° PA=PP′PC=
∵∠APB=150°∴∠BPP′=90°
∴P′P2+BP2=
即PA2+PB2=PC2
(2)類比延伸:
如圖②在等腰三角形ABC中,∠BAC=90°,內(nèi)部有一點P,若∠APB=135°,試判斷線段PA、PB、PC之間的數(shù)量關(guān)系,并證明.
(3)聯(lián)想拓展:
如圖③在△ABC中,∠BAC=120°,AB=AC,點P在直線AB上方,且∠APB=60°,滿足(kPA)2+PB2=PC2 , 請直接寫出k的值.
【答案】
(1)P′B;P′B2
(2)
解:關(guān)系式為:2PA2+PB2=PC2
證明如圖②:將△APC繞A點逆時針旋轉(zhuǎn)90°,得到△AP′B,連接PP′,
則△APP′為等腰直角三角形
∴∠APP′=45°PP′= PA,PC=P′B,
∵∠APB=135°
∴∠BPP′=90°
∴P′P2+BP2=P′B2,
∴2PA2+PB2=PC2
(3)
解:k= .
證明:如圖③
將△APC 繞A點順時針旋轉(zhuǎn)120°得到△AP′B,連接PP′,過點A作AH⊥PP′,
可得∠APP′=30°PP′= PA,PC=P′B,
∵∠APB=60°,
∴∠BPP′=90°,
∴P′P2+BP2=P′B2,
∴( PA)2+PB2=PC2
∵(kPA)2+PB2=PC2,
∴k= .
【解析】解:(1)PC=P′B
P′P2+BP2=P′B2 .
【考點精析】本題主要考查了圖形的旋轉(zhuǎn)的相關(guān)知識點,需要掌握每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度,任意一對對應點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】全面二孩政策于2016年1月1日正式實施,黔南州某中學對八年級部分學生進行了隨機問卷調(diào)查,其中一個問題“你爸媽如果給你添一個弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個選項(要求僅選擇一個選項):
A.非常愿意 B.愿意 C.不愿意 D.無所謂
如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請結(jié)合圖中信息解答以下問題:
(1)試問本次問卷調(diào)查一共調(diào)查了多少名學生?并補全條形統(tǒng)計圖;
(2)若該年級共有450名學生,請你估計全年級可能有多少名學生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個弟弟(或妹妹)?
(3)在年級活動課上,老師決定從本次調(diào)查回答“不愿意”的同學中隨機選取2名同學來談談他們的想法,而本次調(diào)查回答“不愿意”的這些同學中只有一名男同學,請用畫樹狀圖或列表的方法求選取到兩名同學中剛好有這位男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)探究:如圖①,直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB上,過點D作DE∥BC交AC于點E,過點E作EF∥AB交BC于點F.若∠ABC=40°,求∠DEF的度數(shù).
請將下面的解答過程補充完整,并填空(理由或數(shù)學式)
解:∵DE∥BC,∴∠DEF= .( 。
∵EF∥AB,∴ =∠ABC.( 。
∴∠DEF=∠ABC.(等量代換)
∵∠ABC=40°,∴∠DEF= °.
(2)應用:如圖②,直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB的延長線上,過點D作DE∥BC交AC于點E,過點E作EF∥AB交BC于點F.若∠ABC=60°,則∠DEF= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖,直線AB,CD相交于點O,OE⊥CD于點O,OD平分∠BOF,∠BOE=50,
求∠AOC,∠AOF,∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上.
(1)B點關(guān)于y軸的對稱點坐標為 ;
(2)將△AOB向左平移3個單位長度得到△A1O1B1,請畫出△A1O1B1;
(3)在(2)的條件下,A1的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系為:____________________(直接寫出結(jié)果).
探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP,CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系為:____________________(直接寫出結(jié)果).
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP,CP分別平分∠ADC和∠BCD,試利用上述結(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】班委會決定,選購圓珠筆、鋼筆共22支,送給山區(qū)學校的同學。已知圓珠筆每支5元,鋼筆每支6元。
(1)若購買圓珠筆、鋼筆剛好用去120元,問圓珠筆、鋼筆各買了多少支?
(2)若購圓珠筆可9折優(yōu)惠,鋼筆可8折優(yōu)惠,在所需費用不超過100元的前提下,請你寫出一種選購方案。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com