【題目】如圖,在平面直角坐標系中,已知矩形OABC的三個頂點A(0,10),B(8,10),C(8,0),過O、C兩點的拋物線y=ax2+bx+c與線段AB交于點D,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.

(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒.請問當t為何值時,以P、Q、C為頂點的三角形是等腰三角形?
(3)若點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M、N、C、E為頂點四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

【答案】
(1)

解:∵四邊形ABCO為矩形,

∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10,

∴△BDC≌△EDC,

∴∠B=∠DEC=90°,EC=BC=10,ED=BD,

由勾股定理易得:EO=6.

∴AE=10﹣6=4,

設(shè)AD=x,則BD=ED=8﹣x,

由勾股定理,得x2+42=(8﹣x)2,

解得,x=3,

∴AD=3,

∵拋物線y=ax2+bx+c過點D(3,10),C(8,0),O(0,0),

,解得:

∴拋物線的解析式為:y=﹣ x2+ x;


(2)

解:如圖1,當CP=CQ時,

10﹣2t=t,t= ;

如圖2,當CP=PQ時,

= ,t= ;

如圖3,當CQ=PQ時,

= ,t=


(3)

解:假設(shè)存在符合條件的M、N點,分兩種情況討論:

EC為平行四邊形的對角線,由于拋物線的對稱軸經(jīng)過EC中點,

若四邊形MENC是平行四邊形,那么M點必為拋物線頂點;

則:M(4, );

而平行四邊形的對角線互相平分,那么線段MN必被EC中點(4,3)平分,

則N(4,﹣ );

②EC為平行四邊形的邊,則EC∥MN,設(shè)N(4,m),

則M(4﹣8,m+6)或M(4+8,m﹣6);

將M(﹣4,m+6)代入拋物線的解析式中,得:m=﹣38,

此時 N(4,﹣38)、M(﹣4,﹣32);

將M(12,m﹣6)代入拋物線的解析式中,得:m=﹣26,

此時 N(4,﹣26)、M(12,﹣32),

綜上,存在符合條件的M、N點,且它們的坐標為:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4, ),N3(4,﹣ ).


【解析】(1)根據(jù)折疊圖形的軸對稱性,△CED、△CBD全等,首先在Rt△CEO中求出OE的長,進而可得到AE的長;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的長.進一步能確定D點坐標,利用待定系數(shù)法即可求出拋物線的解析式;(2)分CP=CQ、CP=PQ、PQ=CQ三種情況討論,根據(jù)等腰三角形的性質(zhì)和相似三角形的判定和性質(zhì)解答即可;(3)由于以M,N,C,E為頂點的四邊形,邊和對角線都沒明確指出,所以要分情況進行討論:①EC做平行四邊形的對角線,那么EC、MN必互相平分,由于EC的中點正好在拋物線對稱軸上,所以M點一定是拋物線的頂點;②EC做平行四邊形的邊,那么EC、MN平行且相等,首先設(shè)出點N的坐標,然后結(jié)合E、C的橫、縱坐標差表示出M點坐標,再將點M代入拋物線的解析式中,即可確定M、N的坐標.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,且EH=EB.下列四個結(jié)論:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你認為正確的序號是( )

A. ①②③ B. ①③④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖①,△ABC、△AED是兩個全等的等腰直角三角形(其頂點B、E重合),∠BAC=∠AED=90°,O為BC的中點,F(xiàn)為AD的中點,連接OF.

(1)問題發(fā)現(xiàn)
①如圖①,線段OF與EC的數(shù)量關(guān)系為;
②將△AED繞點A逆時針旋轉(zhuǎn)45°,如圖②,OF與EC的數(shù)量關(guān)系為;

(2)類比延伸
將圖①中△AED繞點A逆時針旋轉(zhuǎn)到如圖③所示的位置,請判斷線段OF與EC的數(shù)量關(guān)系,并給出證明.

(3)拓展探究
將圖①中△AED繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α,0°≤α≤90°,AD= ,△AED在旋轉(zhuǎn)過程中,存在△ACD為直角三角形,請直接寫出線段CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點,ABCD,連接EAED

(1)探究猜想:

①若∠A=20°,∠D=40°,則∠AED= °

②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.

(2)拓展應(yīng)用:

如圖②,射線FEl1,l2交于分別交于點E、F,ABCDa,bc,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y= 的圖象與性質(zhì)進行了探究.下面是小東的探究過程,請補充完整,并解決相關(guān)問題:
(1)函數(shù)y= 的自變量x的取值范圍是;
(2)表格是y與x的幾組對應(yīng)值.

x

﹣2

﹣1

0

1

2

3

4

y

2

4

2

m

表中m的值為;
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應(yīng)值為坐標的點. 根據(jù)描出的點,畫出函數(shù)y= 的大致圖象;

(4)結(jié)合函數(shù)圖象,請寫出函數(shù)y= 的一條性質(zhì):
(5)如果方程 =a有2個解,那么a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標分別為A(-4,5),C(-1,3).

(1)請在網(wǎng)格平面內(nèi)作出平面直角坐標系(不寫作法);

(2)請作出△ABC關(guān)于y軸對稱△A'B'C';

(3)分別寫出A'、B'、C'的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,BC=4,∠B=60°,點E是邊AB上的一點,點F是邊CD上一點,將平行四邊形ABCD沿EF折疊,得到四邊形EFGC,點A的對應(yīng)點為點C,點D的對應(yīng)點為點G,則△CEF的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】銷售有限公司到某汽車制造有限公司選購AB兩種型號的轎車,用300萬元可購進A型轎車10輛,B型轎車15輛;用300萬元可購進A型轎車8輛,B型轎車18.

(1)AB兩種型號的轎車每輛分別多少元?

(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準備用不超過400萬元購進A、B兩種型號轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬元,問:有幾種購車方案?在這幾種購車方案中,哪種獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張同學學完統(tǒng)計知識后,隨機調(diào)查了她所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形統(tǒng)計圖和條形統(tǒng)計圖:

請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:

(1)小張同學共調(diào)查了   名居民的年齡,扇形統(tǒng)計圖中a=   ;

(2)補全條形統(tǒng)計圖,并注明人數(shù);

(3)若該轄區(qū)年齡在0~14歲的居民約有3500人,請估計該轄區(qū)居民人數(shù)是多少人.

查看答案和解析>>

同步練習冊答案