在矩形ABCD中,AD=5,AB=3,AE平分∠BAD交BC邊于點(diǎn)E,則線(xiàn)段BE,EC的長(zhǎng)度分別為( 。
A.2和3 B.3和2 C.4和1 D.1和4
B【考點(diǎn)】矩形的性質(zhì).
【分析】先根據(jù)角平分線(xiàn)及矩形的性質(zhì)得出∠BAE=∠AEB,再由等角對(duì)等邊得出BE=AB,從而求出EC的長(zhǎng).
【解答】解:∵AE平分∠BAD交BC邊于點(diǎn)E,
∴∠BAE=∠EAD,
∵四邊形ABCD是矩形,
∴AD∥BC,AD=BC=5,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE=3,
∴EC=BC﹣BE=5﹣3=2,
故選:B.
【點(diǎn)評(píng)】本題主要考查了角平分線(xiàn)、矩形的性質(zhì)及等腰三角形的判定,根據(jù)已知得出∠BAE=∠AEB是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.把直線(xiàn)y=﹣2x沿y軸向上平移3個(gè)單位長(zhǎng)度,所得直線(xiàn)的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在矩形ABCD中,邊AB的長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BEDF是菱形,且EF=AE+FC,則邊BC的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在Rt△ABC中,∠C=90°,O是斜邊AB上的中點(diǎn),AE=CE,BF∥AC.
(1)求證:△AOE≌△BOF;
(2)求證:四邊形BCEF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線(xiàn)上D點(diǎn)處,請(qǐng)判定此時(shí)四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com