【題目】在如圖所示的方格紙中,小正方形的頂點叫做格點,△ABC是一個格點三角形(即△ABC的三個頂點都在格點上),根據(jù)要求回答下列問題:
(1)畫出△ABC先向左平移6格,再向上平移1格所得的△A′B′C′;
(2)利用網(wǎng)格畫出△ABC中BC邊上的高AD.
(3)過點A畫直線l,將△ABC分成面積相等的兩個三角形;
(4)在直線AB的右側(cè)格點圖中標(biāo)出所有格點E(不包括點C),使S△ABE=S△ABC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場投入13 800元資金購進甲、乙兩種礦泉水共500箱,礦泉水的成本價和銷售價如表所示:
類別/單價 | 成本價 | 銷售價(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場購進甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場共獲得利潤多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點在直線上,
(1)直線解析式為 ;
(2)畫出該一次函數(shù)的圖象;
(3)將直線向上平移個單位長度得到直線,與軸的交點的坐標(biāo)為 ;
(4)直線與直線相交于點,點坐標(biāo)為 ;
(5)三角形ABC的面積為 ;
(6)由圖象可知不等式的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y1= (a>0,a為常數(shù))和y2= 在第一象限內(nèi)的圖象如圖所示,點M在y2= 的圖象上,MC⊥x軸于點C,交y1= 的圖象于點A;MD⊥y軸于點D,交y1= 的圖象于點B,當(dāng)點M在y2= 的圖象上運動時,以下結(jié)論:
①S△ODB=S△OCA;
②四邊形OAMB的面積為2﹣a;
③當(dāng)a=1時,點A是MC的中點;
④若S四邊形OAMB=S△ODB+S△OCA , 則四邊形OCMD為正方形.
其中正確的是 . (把所有正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ACDF中,AC=DF,點B在CD上,點E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.
(1)用兩種不同的方法表示長方形ACDF的面積S
方法一:S=
方法二:S=
(2)求a,b,c之間的等量關(guān)系(需要化簡)
(3)請直接運用(2)中的結(jié)論,求當(dāng)c=5,a=3,S的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長為4,對角線相交于點P,頂點A,C分別在x軸,y軸的正半軸上,拋物線L經(jīng)過O,P,A三點,點E是正方形內(nèi)的拋物線上的動點.
(1)點P的坐標(biāo)為;
(2)求拋物線L的解析式;
(3)求△OAE與△OCE面積之和的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感恩是中華民族的傳統(tǒng)美德,在4月份某校提出了“感恩父母、感恩老師、感恩他人”的“三感”教育活動.感恩事例有:A.給父母過一次生日;B .為父母做一次家務(wù)活,讓父母休息一天;C.給老師一個發(fā)自內(nèi)心的擁抱,并且與老師談心;D.幫助有困難的同學(xué)度過難關(guān).為了解學(xué)生對這四種感恩事例的情況,在全校范圍內(nèi)隨機抽取若干名學(xué)生,進行問卷調(diào)查(每個被調(diào)查的同學(xué)在4種感恩事例中選擇最想做的一種),將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共查了名學(xué)生;
(2)請補全扇形統(tǒng)計圖中的數(shù)據(jù)及條形統(tǒng)計圖;
(3)若有3名選 A的學(xué)生,1名選 C的學(xué)生組成志愿服務(wù)隊外出參加聯(lián)誼活動,欲從中隨機選出2人擔(dān)任活動負(fù)責(zé)人,請通過樹狀圖或列表求兩人均是選 A的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,M,N分別是邊AB、BC的中點,E、F是邊AC上的三等分點,連接ME、NF且延長后交于點D,連接BE、BF
(1)求證:四邊形BFDE是平行四邊形;(2)當(dāng)△ABC滿足什么條件時四邊形BFDE是菱形,證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com