如圖,判斷AB∥CE的理由是

[  ]

A.∠B=∠ACE

B.∠A=∠ACE

C.∠B=∠ACB

D.∠A=∠ECD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知△ABC中,AB=AC,以AB為直線的圓O交BC于D,交AC于E,
(1)如圖①,若AB=6,CD=2,求CE的長(zhǎng);
(2)如圖②,當(dāng)∠A為銳角時(shí),使判斷∠BAC與∠CBE的關(guān)系,并證明你的結(jié)論;
(3)若②中的邊AB不動(dòng),邊AC繞點(diǎn)A按逆時(shí)針旋轉(zhuǎn),當(dāng)∠BAC為鈍角時(shí),如圖③,CA的延長(zhǎng)線與圓O相交于E.
請(qǐng)問(wèn):∠BAC與∠CBE的關(guān)系是否與(2)中你得出的關(guān)系相同?若相同,請(qǐng)加以證明,若不同,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)P,C是⊙O上一點(diǎn),連接PC交AB于點(diǎn)E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若
BC
AC
=1:2,求AE:EB:BD的值(請(qǐng)你直接寫(xiě)出結(jié)果);
(3)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CE•CP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的情景對(duì)話,然后解答問(wèn)題:
老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小華:等邊三角形一定是奇異三角形!
小明:那直角三角形中是否存在奇異三角形呢?
問(wèn)題(1)根據(jù)“奇異三角形”的定義,請(qǐng)你判斷小華提出的猜想:“等邊三角形一定是奇異三角形”是否正確?
問(wèn)題(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
問(wèn)題(3)如圖,以AB為斜邊分別在AB的兩側(cè)作直角三角形,且AD=BD,若四邊形ADBC內(nèi)存在點(diǎn)E,使得AE=AD,CB=CE.
①求證:△ACE是奇異三角形;
②當(dāng)△ACE是直角三角形時(shí),求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BE.CE分別平分∠ABC、∠BCD,且BE⊥CE,垂足為點(diǎn)E.試判斷AB、CD的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案