【題目】如圖,四邊形ABCD是平行四邊形,AB=BC=2,∠ABC=30°,點(diǎn)E是射線DA上一動點(diǎn),把△CDE沿CE折疊,點(diǎn)D的對應(yīng)點(diǎn)為D′,連接D′B.若△D′BC為等邊三角形,則DE=____________.
【答案】2-2或+1
【解析】先判斷ABCD是菱形,根據(jù)菱形的性質(zhì)可得:∠D=∠ABC=30°,∠BCD=150°,然后根據(jù)△D′BC為等邊三角形,可得∠BCD′=60°,然后根據(jù)折疊的性質(zhì)可得:△DCE≌△D′CE,進(jìn)而可得∠DCE=45°,然后過點(diǎn)E作EF⊥CD,垂足為F,然后解直角三角形DEF即可求出DE的值.
①如圖(1)所示,當(dāng)點(diǎn)E在邊AD上時. ∵四邊形ABCD是平行四邊形,AB=BC=2,∴四邊形ABCD是菱形.
∵AB=2,∠ABC=30°,∴CD=AB=2,∠D=∠A=30°,∠BCD=150°.
∵△D′BC為等邊三角形,∴∠BCD′=60°,∴∠DCD′=90°.
∵△CDE沿CE折疊,得到△CD′E,∴△DCE≌△D′CE,∴∠DCE=DCD′=45°,過點(diǎn)E作EF⊥CD,垂足為F,則∠CFE=90°,∴∠CEF=∠DCE=45°,∴CF=EF.在Rt△DEF中,∠D=30°,∴EF=DE,設(shè)EF=x,則DE=2x,CF=x,由勾股定理可得:FD=x.
∵CF+FD=CD=2,即x+=2,解得:x=,∴DE=2x=2﹣2.
②當(dāng)點(diǎn)E在DA的延長線上時,如圖(2),過點(diǎn)B作BF⊥AD,交DA的延長線于點(diǎn)F.由折疊可知∠ED′C=∠D=30°,又∠BD′C=60°,所以D′E為∠BD′C的平分線.
又∵△BD′C是等邊三角形,∴D′E⊥BC.
又∵AD∥BC,∴D′E⊥AD.
∵∠ABC=30°,∴∠BAF=30°.
又∵AB=2,∴AD=,令D′E與BC的交點(diǎn)為G,則易知EF=BG=BC=1,
∴AE=﹣1,∴DE=+1.
故答案為:2﹣2或+1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個倉庫共存有糧食60.解決下列問題,3個小題都要寫出必要的解題過程:
(1)甲倉庫運(yùn)進(jìn)糧食14,乙倉庫運(yùn)出糧食10后,兩個倉庫的糧食數(shù)量相等.甲、乙兩個倉庫原來各有多少糧食?
(2)如果甲倉庫原有的糧食比乙倉庫的2倍少3,則甲倉庫運(yùn)出多少糧食給乙倉庫,可使甲、乙兩倉庫糧食數(shù)量相等?
(3)甲乙兩倉庫同時運(yùn)進(jìn)糧食,甲倉庫運(yùn)進(jìn)的數(shù)量比本倉庫原存糧食數(shù)量的一半多1,乙倉庫運(yùn)進(jìn)的數(shù)量是本倉庫原有糧食數(shù)量加上8所得的和的一半.求此時甲、乙兩倉庫共有糧食多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(新知理解)
如圖①,點(diǎn)C在線段AB上,若BC=πAC,則稱點(diǎn)C是線段AB的圓周率點(diǎn),線段AC、BC稱作互為圓周率伴侶線段.
(1)若AC=3,求AB;
(2)若點(diǎn)D也是圖①中線段AB的圓周率點(diǎn)(不同于點(diǎn)C),判斷AC,BD的等量關(guān)系;
(解決問題)
如圖②,現(xiàn)有一個直徑為1個單位長度的圓片,將圓片上的某點(diǎn)與數(shù)軸上表示1的點(diǎn)重合,并把圓片沿?cái)?shù)軸向右無滑動地滾動1周,該點(diǎn)到達(dá)點(diǎn)C的位置.
(3)若點(diǎn)M、N是線段OC的圓周率點(diǎn),求MN的長;
(4)圖②中,若點(diǎn)D在射線OC上,且線段CD與以O(shè)、C、D中某兩個點(diǎn)為端點(diǎn)的線段互為圓周率伴侶線段,請直接寫出點(diǎn)D所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.
A. 2 B. 4 C. 5 D. 無數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)作△ABC的角平分線AD(尺規(guī)作圖,保留痕跡);
(2)在AD的延長線上任取一點(diǎn)E,連接BE,CE.
①求證:△BDE≌△CDE;
②當(dāng)AE=2AD時,四邊形ABEC是平行四邊形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,A、B在數(shù)軸上對應(yīng)的數(shù)分別用、表示,且.
(1)數(shù)軸上點(diǎn)A表示的數(shù)是 ,點(diǎn)B表示的數(shù)是
(2)若一動點(diǎn)P從點(diǎn)A出發(fā),以3個單位長度/秒速度由A向B運(yùn)動;動點(diǎn)Q從原點(diǎn)O出發(fā),以1個單位長度/秒速度向B運(yùn)動,點(diǎn)P、Q同時出發(fā),點(diǎn)Q運(yùn)動到B點(diǎn)時兩點(diǎn)同時停止.設(shè)點(diǎn)Q運(yùn)動時間為t秒.
①若P從A到B運(yùn)動,則P點(diǎn)表示的數(shù)為 ,Q點(diǎn)表示的數(shù)為 .用含的式子表示)
②當(dāng)t為何值時,點(diǎn)P與點(diǎn)Q之間的距離為2個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度數(shù);
(2)若∠BOF=36°,求∠AOC的度數(shù);
(3)若|∠AOC﹣∠BOF|=α°,請直接寫出∠AOC和∠BOF的度數(shù).(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過y軸上一點(diǎn)P(0,1)作平行于x軸的直線PB,分別交函數(shù)y1=x2(x≥0)與y2= (x≥0)的圖象于A1 , B1兩點(diǎn),過點(diǎn)B1作y軸的平行線交y1的圖象于點(diǎn)A2 , 再過A2作直線A2B2∥x軸,交y2的圖象于點(diǎn)B2 , 依次進(jìn)行下去,連接A1A2 , B1B2 , A2A3 , B2B3 , …,記△A2A1B1的面積為S1 , △A2B1B2的面積為S2 , △A3A2B2的面積為S3 , △A3B2B3的面積為S4 , …則S2016=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com