已知:α、β是方程x2-7x+3=0的兩根,且α>β,試求α2+7β的值.

解:∵α,β是方程x2-7x+3=0的兩個實數(shù)根,
∴α2=7α-3,α+β=7,αβ=3,
∴α2+7β=7α-3+7β,
=7(α+β)-3,
=49-3,
=46.
故答案為:46.
分析:α、β是方程x2-7x+3=0的兩根,則α2=7α-3,再由根與系數(shù)的關(guān)系,得α+β=7,αβ=3,代入數(shù)值計算即可.
點評:本題考查了一元二次方程根與系數(shù)的關(guān)系,屬于基礎(chǔ)題,關(guān)鍵掌握方程ax2+bx+c=0的兩根為x1,x2,則x1+x2=-,x1•x2=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

定義A=a+b
m
、B=a-b
m
(a,b,m均為有理數(shù))都是無理數(shù),滿足:①A+B=2a為有理數(shù),②AB=a2-mb2為有理數(shù).稱A、B兩數(shù)為一對共軛數(shù).(如:3+2
2
,3-2
2
,∵3+2
2
+3-2
2
=6,(3+2
2
)(3-2
2
)
=32-(2
2
)2=9-8=1
,∴3+2
2
3-2
2
是一對共軛數(shù)).
(1)已知,x1,x2是方程x2-4x=2的兩個根,求x1、x2的值,并判別x1、x2是否是一對共軛數(shù)?
(2)在(1)的條件下,試判別x12、x22是否是一對共軛數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知兩圓的半徑是方程(x-2)(x-3)=0的兩實數(shù)根,圓心距為4,那么這兩個圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

韋達定理:若x1,x2為方程ax2+bx+c=0的兩根,則x1+x2=-
b
a
,x1x2=
c
a
,已知:m和n是方程2x2-5x-3=0的兩根,利用以上材料,不解方程,求:
(1)
1
m
+
1
n

(2)m2+n2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知兩圓半徑長是方程x2-9x+14=0的兩個根,若圓心距是9,試說明兩圓的位置關(guān)系是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1、x2,則兩根與方程系數(shù)之間有如下關(guān)系:x1+x2=-
b
a
,x1x2=
c
a
.這一結(jié)論稱為一元二次方程根與系數(shù)關(guān)系,它的應(yīng)用很多,請完成下列各題:
(1)應(yīng)用一:用來檢驗解方程是否正確.
檢驗:先求x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

再將你解出的兩根相加、相乘,即可判斷解得的根是否正確.(本小題完成填空即可)
(2)應(yīng)用二:用來求一些代數(shù)式的值.
①已知:x1、x2是方程x2-4x+2的兩個實數(shù)根,求(x1-1)(x2-1)的值;
②若a、b是方程x2+2x-2013=0的兩個實數(shù)根,求代數(shù)式a2+3a+b的值.

查看答案和解析>>

同步練習(xí)冊答案