如圖甲,在平面直角坐標系中,拋物線y=ax2+bx-3a經過A(-1,0)、B(0,3)兩點,與x軸交于另一點C,頂點為D.
(1)求點D的坐標;
(2)經過點B、D兩點的直線與x軸交于點E,若點F是拋物線上一點,以A、B、E、F為頂點的四邊形是平行四邊形,求點F的坐標;
(3)若平行于x軸的直線與拋物線交于G、H兩點,且GH為直徑的圓與x軸相切,求這個圓半徑的長;
(4)如圖乙,P(2,3)是拋物線上的點,Q是直線AP上方的拋物線上一動點,求△APQ的最大面積和此時Q點的坐標.

解:(1)∵拋物線y=ax2+bx-3a經過A(-1,0)、B(0,3)兩點,
,解得:
拋物線的解析式為:y=-x2+2x+3
y=-(x-1)2+4
∴D(1,4);

(2)∵四邊形AEBF是平行四邊形,
∴BF=AE.
∵B(0,3),
設直線BD的解析式為:y=kx+b,
,
解得,
∴直線BD的解析式為:y=x+3
當y=0時,x=-3
∴E(-3,0),
∴OE=3,
∵A(-1,0)
∴OA=1,
∴AE=2
∴BF=2,
∴F的橫坐標為2,
∴y=3,
∴F(2,3);

(3)設直徑為GH的⊙M切x軸于點N,連接MN,作HQ⊥x軸于Q,
∴MN⊥x軸,且MN=HM,
∴四邊形MNQH為正方形.由拋物線的對稱性得MH=MG,
∴M在拋物線的對稱軸上,設M(1,a),
∴H(a+1,a),
∴a=-(a+1)2+2(a+1)+3,解得:
a1=,a2=
∴這個圓半徑的長為:,

(4)如圖,設Q(a,-a2+2a+3),作PS⊥x軸,QR⊥x軸于點S、R,且P(2,3),
∴AR=a+1,QR=-a2+2a+3,PS=3,RS=2-a,
∴S△PQA=S四邊形PSRQ+S△QRA-S△PSA
=+-
∴S△PQA=-(a-2+,
∴當a=時,S△PQA的面積最大為,
∴Q(,).
分析:(1)利用待定系數(shù)法將A(-1,0)、B(0,3)兩點的坐標代入拋物線y=ax2+bx-3a求出a、b的值就可以求出拋物線的解析式.然后化為頂點式就可以就可以求出其頂點D的坐標.
(2)根據(jù)點B的坐標,待定系數(shù)法即可求出直線BD的解析式,從而求出直線BD與x軸的交點E的坐標,就可以求出AE的長度,根據(jù)平行四邊形的性質就可以求出BF=2,知道F的橫坐標,代入拋物線的解析式就可以求出F的坐標.
(3)根據(jù)拋物線的對稱性和圓的而且顯性質,可以知道M的橫坐標,設出M的坐標,根據(jù)正方形的性質求出M的坐標,從而求出圓的半徑.
(4)設出Q點的坐標,作PS⊥x軸,QR⊥x軸于點S、R,則利用S△PQA=S四邊形PSRQ+S△QRA-S△PSA,就可以把其面積的表達式表示出來,最后化成頂點式就可以求出其最值和Q的坐標.
點評:本題是一道二次函數(shù)的綜合試題,考查了待定系數(shù)法求拋物線的解析式,頂點坐標,平行四邊形的性質的運用,圓的切線的性質的運用,三角形的面積公式的計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案