如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點(diǎn)分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點(diǎn)P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點(diǎn)),求反比例函數(shù)的關(guān)系式;
(3)求點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q的坐標(biāo),判斷點(diǎn)Q是否在該反比例函數(shù)的圖象上.
(1);(2);(3)在,理由見(jiàn)解析.
【解析】
試題分析:(1)用待定系數(shù)法即可得出一次函數(shù)的解析式;
(2)先求出P點(diǎn)的坐標(biāo),然后用待定系數(shù)法即可求出反比例函數(shù)解析式;
(3)先求出P關(guān)于原點(diǎn)對(duì)稱的點(diǎn)Q的坐標(biāo),然后代入反比例函數(shù)驗(yàn)證即可.
試題解析:(1)∵一次函數(shù)y=ax+b與x軸,y軸的交點(diǎn)分別是A(﹣4,0),B(0,2),
∴,解得.
∴一次函數(shù)的關(guān)系式為:.
(2)設(shè)P(﹣4,p),則,解得:p =±1.
由題意知p =﹣1,p =1舍去.
把P(﹣4,﹣1)代入反比例函數(shù),得.
∴反比例函數(shù)的關(guān)系式為:.
(3)∵P(﹣4,﹣1),∴關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q的坐標(biāo)為Q(4,1).
∵把Q(4,1)代入反比例函數(shù)關(guān)系式成立,
∴Q在該反比例函數(shù)的圖象上.
考點(diǎn):1.反比例函數(shù)綜合題;2.待定系數(shù)法;3.曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系;4.關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的特征.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
m |
x |
4 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k |
x |
k |
x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com