【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為C.延長AB交CD于點E.連接AC,作∠DAC=∠ACD,作AF⊥ED于點F,交⊙O于點G.
(1)求證:AD是⊙O的切線;
(2)如果⊙O的半徑是6cm,EC=8cm,求GF的長.
【答案】
(1)證明:連接OC.
∵CD是⊙O的切線,
∴∠OCD=90°.
∴∠OCA+∠ACD=90°.
∵OA=OC,
∴∠OCA=∠OAC.
∵∠DAC=∠ACD,∠OCA+∠DAC=90°
∴∠0AC+∠CAD=90°.
∴∠OAD=90°.
∴AD是⊙O的切線.
(2)解:連接BG;
∵OC=6cm,EC=8cm,
∴在Rt△CEO中,OE= =10.
∴AE=OE+OA=16.
∵AF⊥ED,
∴∠AFE=∠OCE=90°,∠E=∠E.
∴Rt△AEF∽Rt△OEC.
∴ .
即: .
∴AF=9.6.
∵AB是⊙O的直徑,
∴∠AGB=90°.
∴∠AGB=∠AFE.
∵∠BAG=∠EAF,
∴Rt△ABG∽Rt△AEF.
∴ .
即: .
∴AG=7.2.
∴GF=AF﹣AG=9.6﹣7.2=2.4(cm).
【解析】(1)連接OC.欲證AD是⊙O的切線,只需證明OA⊥AD即可;(2)連接BG.在Rt△CEO中利用勾股定理求得OE=10,從而求得AE=13;然后由相似三角形Rt△AEF∽Rt△OEC的對應(yīng)邊成比例求得AF=9.6,再利用圓周角定理證得Rt△ABG∽Rt△AEF,根據(jù)相似三角形的對應(yīng)邊成比例求得AG=7.2,所以GF=AF﹣AG=9.6﹣7.2=2.4.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和圓周角定理的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,O為對角線AC的中點,EF經(jīng)過點O并與AB,CD分別相交于點E,F(xiàn).
(1)求證:AE=CF;
(2)當(dāng)EF⊥AC時,連接AF,CE,試判斷四邊形AFCE是怎樣的四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人先后從公園大門出發(fā),沿綠道向碼頭步行,乙先到碼頭并在原地等甲到達.圖1是他們行走的路程y(m)與甲出發(fā)的時間x(min)之間的函數(shù)圖象.
(1)求線段AC對應(yīng)的函數(shù)表達式;
(2)寫出點B的坐標和它的實際意義;
(3)設(shè)d(m)表示甲、乙之間的距離,在圖2中畫出d與x之間的函數(shù)圖象(標注必要數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上,點A的初始位置表示的數(shù)為1,現(xiàn)點A做如下移動:第1次點A向左移動3個單位長度至點A1,第2次從點A1向右移動6個單位長度至點A2,第3次從點A2向左移動9個單位長度至點A3,…,按照這種移動方式進行下去,點A2019表示的數(shù),是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是 ;請補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,“電視”所對應(yīng)的圓心角的度數(shù)是 ;
(3)若該市約有90萬人,請你估計其中將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,小麗用尺規(guī)這樣作圖:(1),以點O為圓心,任意長為半徑作弧,交OA,OB于D,E兩點;(2)分別以點D,E為圓心,大于 DE的長為半徑作弧,兩弧交于點C;第三部,作射線OC并連接CD,CE,下列結(jié)論不正確的是( )
A.∠1=∠2
B.S△OCE=S△OCD
C.OD=CD
D.OC垂直平分DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
數(shù)學(xué)活動課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”
小艾的作法如下:
(1)在直線l上任取點A,以A為圓心,AP長為半徑畫弧.
(2)在直線l上任取點B,以B為圓心,BP長為半徑畫。
(3)兩弧分別交于點P和點M
(4)連接PM,與直線l交于點Q,直線PQ即為所求.
老師表揚了小艾的作法是對的.
請回答:小艾這樣作圖的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個包裝紙盒的三視圖(單位:cm)
(1)該包裝紙盒的幾何形狀是什么?
(2)畫出該紙盒的平面展開圖.
(3)計算制作一個紙盒所需紙板的面積.(精確到個位)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com