正方形ABCD的邊長是6,分別以A,D為圓心,6為半徑在正方形內(nèi)作弧,圓O與AB,弧BD,弧AC都相切,求圓O的面積.


解:連接OA、OD、OM,過O作OE⊥AD于E,
設(shè)⊙O的半徑是R,則AE=OM=R,DE=6-R,
由相切兩圓的性質(zhì)得:OA=6-R,OD=6+R,
由勾股定理得:OE2=DO2-DE2=OA2-AE2,
即(6+R)2-(6-R)2=(6-R)2-R2
解得:R=1,
即圓O的面積是π×12=π,
答:圓O的面積是π.
分析:連接OA、OD、OM,過O作OE⊥AD于E,設(shè)⊙O的半徑是R,推出AE=OM=R,DE=6-R,OA=6-R,OD=6+R,由勾股定理得出DO2-DE2=OA2-AE2,推出方程(6+R)2-(6-R)2=(6-R)2-R2,求出R的值即可.
點評:本題考查了相切兩圓的性質(zhì),正方形性質(zhì),勾股定理的應(yīng)用,主要考查了學(xué)生對相切兩圓的性質(zhì)的運用,用了方程思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)附加題
如圖所示,正方形ABCD的邊長為7,AE=BF=CG=DH=3,甲、乙兩只螞蟻同時從A點出發(fā),甲螞蟻以每秒
3
5
的速度沿路線AE→EF→FG→GH→HE→EB→BC→CD→DA循環(huán)爬行;乙螞蟻以每秒
4
5
的速度沿路線AH→HG→GF→FE→EH→HD→DC→CB→BA循環(huán)爬行.那么出發(fā)后兩只螞蟻在第
 
s第一次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD的邊長為4,P為對角線AC上一點,且CP=3
2
,PE⊥PB交CD于點E,則PE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長為4,P是BC上一動點,QP⊥AP交DC于Q,設(shè)PB=x,△ADQ的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)(1)中函數(shù)若是一次函數(shù),求出直線與兩坐標(biāo)軸圍成的三角形面積;若是二次函數(shù),請利用配方法求出拋物線的對稱軸和頂點坐標(biāo);
(3)畫出這個函數(shù)的圖象;
(4)點P是否存在這樣的位置,使△APB的面積是△ADQ的面積的
23
?若存在,求出BP的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長為12cm,E為CD邊上一點,DE=5cm.以點A為中心,將△ADE按順時針方向旋轉(zhuǎn)得△ABF,則點E所經(jīng)過的路徑長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長為6,點M在邊DC上,M,N兩點關(guān)于對角線AC對稱,若DM=2,則tan∠ADN=
3
2
3
2

查看答案和解析>>

同步練習(xí)冊答案