如圖,直線l的解析式為y=3x+3,若直線y=a與直線l的交點在第二象限,則a的取值范圍是


  1. A.
    1<a<2
  2. B.
    3<a<4
  3. C.
    -1<a<0
  4. D.
    0<a<3
D
分析:首先求出方程組的解,然后根據(jù)第二象限內(nèi)點的坐標特征,列出關(guān)于a的不等式組,從而得出a的取值范圍.
解答:解方程組,

∵交點在第二象限,

解得0<a<3.
故選D.
點評:本題主要考查了一次函數(shù)與方程組的關(guān)系及第二象限內(nèi)點的坐標特征.兩個一次函數(shù)圖象的交點坐標就是對應的二元一次方程組的解,反之,二元一次方程組的解就是對應的兩個一次函數(shù)圖象的交點坐標.第二象限內(nèi)點的坐標特征:橫坐標小于0,縱坐標大于0.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,直線l的解析式為y=-x+4,它與x軸、y軸分別相交于A、B兩點,平行于直線l的直線m從原點O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運動,它與x軸、y軸分別相交于M、N兩點,運動時間為t秒(0<t≤4)
(1)求A、B兩點的坐標;
(2)用含t的代數(shù)式表示△MON的面積S1;
(3)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S2;
①當2<t≤4時,試探究S2與之間的函數(shù)關(guān)系;
②在直線m的運動過程中,當t為何值時,S2為△OAB的面積的
516
?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,直線AB的解析式為y=kx-2k(k<0)與x軸、y軸分別交于A、B兩點,∠ABO=60°.經(jīng)過A、O兩點的⊙O1與x軸的負半軸交于點C,與直線AB切于點A.
(1)求C點的坐標;
(2)如圖②,過O1作直線EF∥y軸,在直線EF上是否存在一點D,使得△DAB的周長最短,若存在,求出D點坐標,不存在,說明理由;
(3)在(2)的條件下,連接OO1與⊙O1交于點G,點P為劣弧
GF
上一個動點,連接GP與EF的延長線交于H點,連接EP與OG交于I點,當P在劣弧
GF
運動時(不與G、F兩點重合),O1H-O1I的值是否發(fā)生變化,若不變,求其值,若發(fā)生變化,求出其值的變化范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l的解析式為y=
34
x-3
,并且與x軸、y軸分別相交于點A,B.
(1)求A,B兩點的坐標;
(2)一個圓心在坐標原點、半徑為1的圓,以0.4個單位/s的速度向x軸正方向運動,問在什么時刻該圓與直線l相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB的解析式為y=-
3
3
x+6
,分別與x軸、y軸相交于B、A兩點.點C在射線BA上以3cm/秒的速度運動,以C點為圓心作半徑為1cm的⊙C.點P以2cm/秒的速度在線段OA上來回運動,過點P作直線l垂直與y軸.若點C與點P同時從點B、點O開始運動,設運動時間為t秒,則在整個運動過程中直線l與⊙C共有
3
3
次相切;直線l與⊙C最后一次相切時t=
26
7
26
7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

求如圖中直線L的解析式.

查看答案和解析>>

同步練習冊答案