【題目】某學校準備購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買2個足球和3個籃球共需360元;購買5個足球和2個籃球共需460元.

(1)求足球和籃球的單價各是多少元?

(2)根據(jù)學校實際情況,需一次性購買足球和籃球共20個,且總費用不超過1450元,學校最多可以購買多少個籃球?

【答案】(1)足球和籃球的單價分別為60元,80元(2)學校最多可以購買12個籃球.

【解析】

(1)直接利用購買2個足球和3個籃球共需360元;購買5個足球和2個籃球共需460元,進而得出方程組進而得出答案;

(2)利用總費用不超過1450元,得出不等關系進而得出答案.

(1)設足球和籃球的單價分別為x元,y元,

依題意得:

×3-×2得:11x=660,x=60

代入①,解得:y=80

∴足球和籃球的單價分別為60元,80元。

(2)設學?梢再徺Im個籃球,依題意得:

化簡得:,故

m為整數(shù),所以,

∴學校最多可以購買12個籃球.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】用字母表示規(guī)律

(1)下圖是由一些火柴棒搭成的圖案:

……

擺第①個圖案用______根火柴棒,擺第②個圖案用______根火柴棒,擺第③個圖案用______根火柴棒;……;按照這種方式擺下去,擺第n個圖案用____________根火柴棒

(2)如圖,觀察下列各正方形圖案,每條邊上有個圓點,每個圖案圓點的總數(shù)是S,按此規(guī)律推斷Sn的關系式是_______________;

n=2,S=4 n=3,S=8 n=4,S=12

(3)某地出租車的收費標準是:3千米以內(nèi)(包括3千米)為起步價收5元,3千米以后每千米價為1.5;

①若某人乘坐了1.5千米,則應收費________元;

②若某人乘坐了6千米,則應收費________元;

③若某人乘坐了x千米(x>3)的路程,則應收費__________________;(只列式,不計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,AD=2AB,FAD的中點,CEAB,垂足E在線段AB,連接EF、CF,則下列結(jié)論:(12DCF=BCD,(2EF=CF;(3SBEC=2SCEF;(4DFE=3AEF.

其中正確結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=∠COD=90°,OE平分∠BOD,若∠AOD∶∠BOC=5∶1,則∠COE的度數(shù)為(  )

A. 30° B. 40° C. 50° D. 60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、E分別在ACDF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知點E,F(xiàn),G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:

1如圖2,將圖1中的點C移動至與點E重合的位置,F(xiàn),G,H仍是BC,CD,DA的中點,求證:四邊形CFGH是平行四邊形;

2如圖3,在邊長為1的小正方形組成的5×5網(wǎng)格中,點A,C,B都在格點上,在格點上畫出點D,使點C與BC,CD,DA的中點F,G,H組成正方形CFGH;

32條件下求出正方形CFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一位出租車司機某日中午的營運全在市區(qū)的環(huán)城公路上進行.如果規(guī)定:順時針方向為正,逆時針方向為負,那天中午他拉了五位乘客所行車的里程如下:(單位:千米)+10,﹣7,+4,﹣9,+2.

(1)將最后一名乘客送到目的地時,這位司機距離出車地點的位置如何?

(2)若汽車耗油為/千米,那么這天中午這輛出租車的油耗多少升?

(3)如果出租車的收費標準是:起步價10元,3千米后每千米2元,問:這個司機這天中午的收入是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過A(2,-4)

(1)k的值.

(2)這個函數(shù)的圖象在哪幾個象限?yx的增大怎樣變化?

(3)畫出函數(shù)的圖象

(4)B(-2,4),C(-1,5)在這個函數(shù)的圖象上嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全世界每年都有大量的土地被沙漠吞沒,改造沙漠,保護土地資源已成為一項十分緊迫的任務.某地區(qū)沙漠原有面積是100萬平方千米,為了解該地區(qū)沙漠面積的變化情況,進行了連續(xù)3年的觀察,并將每年年底的觀察結(jié)果記錄如下表:

觀察時間

該地區(qū)沙漠面積(萬平方千米)

第一年年底

100.2

第二年年底

100.4

第三年年底

100.6

預計該地區(qū)沙漠的面積將繼續(xù)按此趨勢擴大.

(1)如果不采取措施,那么到第m年年底,該地區(qū)沙漠面積將變?yōu)槎嗌偃f平方千米?

(2)如果第5年后采取措施,每年改造0.8萬平方千米沙漠(沙漠面積的擴大趨勢不變),那么到第n年(n>5)年年底該地區(qū)沙漠的面積為多少萬平方千米?

(3)在(2)的條件下,第90年年底,該地區(qū)沙漠面積占原有沙漠面積的多少?

查看答案和解析>>

同步練習冊答案