已知a,b,c為三個有理數(shù),它們在數(shù)軸上的對應位置如圖所示,則|c-b|-|b-a|-|a-c|=
0
0

分析:根據(jù)圖示,可知有理數(shù)a,b,c的取值范圍b>1>a>0>c>-1,然后根據(jù)它們的取值范圍去絕對值并求|c-b|-|b-a|-|a-c|的值.
解答:解:根據(jù)圖示知:b>1>a>0>c>-1,
∴|c-b|-|b-a|-|a-c|
=-c+b-b+a-a+c
=0
故答案是0.
點評:本題主要考查了關于數(shù)軸的知識以及有理數(shù)大小的比較.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、已知a、b、c為三個正整數(shù),如果a+b+c=12,那么以a、b、c為邊能組成的三角形是:①等腰三角形;②等邊三角形;③直角三角形;④鈍角三角形.以上符合條件的正確結論是
①②③
.(只填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知a、b、c為三個正整數(shù),如果a+b+c=12,那么以a、b、c為邊能組成的三角形是:①等腰三角形;②等邊三角形;③直角三角形;④鈍角三角形.以上符合條件的正確結論個數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a、b、c為三個非負數(shù),且滿足3a+2b+c=5,2a+b-3c=1.
(1)求c的取值范圍;
(2)設S=3a+b-7c,求S的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知x,y,z為三個非負實數(shù),滿足
x+y+z=30
2x+3y+4z=100

(1)用含z的代數(shù)式分別表示x,y得x=
z-10
z-10
,y=
-2z+40
-2z+40

(2)s=3x+2y+5z的最小值為
90
90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知a1,a2,a3為三個整數(shù),且a1≤a2≤a3,三個數(shù)中的每一數(shù)均為其它兩數(shù)的乘積,求所有滿足條件的三數(shù)組(a1,a2,a3).
(2)如果a1,a2,a3,a4,a5,a6為6個整數(shù),且a1≤a2≤a3≤a4≤a5≤a6,六個數(shù)中任一個數(shù)均為其它五個數(shù)中某四個數(shù)的乘積,那么滿足上述條件的數(shù)組(a1,a2,a3,a4,a5,a6)共有多少組?請說明理由.

查看答案和解析>>

同步練習冊答案