【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數是( 。
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
①只要證明△ADE為等腰直角三角形即可
②只要證明△AEF≌△CBF(SAS)即可;
③假設BF2=FGFC,則△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,顯然不可能,故③錯誤,
④由△ADF∽△GBF,可得,由EG∥CD,推出,推出,由AD=AE,EGAE=BGAB,故④正確,
①DE平分∠ADC,∠ADC為直角,
∴∠ADE=×90°=45°,
∴△ADE為等腰直角三角形,
∴AD=AE,
又∵四邊形ABCD矩形,
∴AD=BC,
∴AE=BC
②∵∠BFE=90°,∠BFE=∠AED=45°,
∴△BFE為等腰直角三角形,
∴則有EF=BF
又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,
∴∠AEF=∠CBF
在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,
∴△AEF≌△CBF(SAS)
∴AF=CF
③假設BF2=FGFC,則△FBG∽△FCB,
∴∠FBG=∠FCB=45°,
∵∠ACF=45°,
∴∠ACB=90°,顯然不可能,故③錯誤,
④∵∠BGF=180°-∠CGB,∠DAF=90°+∠EAF=90°+(90°-∠AGF)=180°-∠AGF,∠AGF=∠BGC,
∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,
∴△ADF∽△GBF,
∴,
∵EG∥CD,
∴,
∴,∵AD=AE,
∴EGAE=BGAB,故④正確,
故選C.
科目:初中數學 來源: 題型:
【題目】如圖,正五邊形ABCDE中,DC和AB的延長線交于F,則圖中與△DBF相似的三角形有(不再添加其他的線段和字母,不包括△DBF本身) ( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經過點A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,管中放置著三根同樣的繩子AA1、BB1、CC1;
(1)小明從這三根繩子中隨機選一根,恰好選中繩子AA1的概率是多少?
(2)小明先從左端A、B、C三個繩頭中隨機選兩個打一個結,再從右端A1、B1、C1三個繩頭中隨機選兩個打一個結,求這三根繩子能連結成一根長繩的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設每件商品的售價上漲x元(x為整數),每周的銷售利潤為y元.
(1)求y與x的函數關系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據李飛與劉亮射擊訓練的成績繪制了如圖所示的折線統(tǒng)計圖.根據圖中所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應推薦______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數的圖象經過點A(2,6).
(1)求這個反比例函數的解析式;
(2)這個函數的圖象位于哪些象限?y隨x的增大如何變化?
(3)點B(3,4),C(5,2),D(,)是否在這個函數圖象上?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次數學測試中,同年級人數相同的甲、乙兩個班的成績統(tǒng)計如下表:
班級 | 平均分 | 中位數 | 方差 |
甲班 | |||
乙班 |
數學老師讓同學們針對統(tǒng)計的結果進行一下評估,學生的評估結果如下:
這次數學測試成績中,甲、乙兩個班的平均水平相同;
甲班學生中數學成績95分及以上的人數少;
乙班學生的數學成績比較整齊,分化較。
上述評估中,正確的是______填序號
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com