【題目】如果關(guān)于x的方程x2-ax+a2-3=0至少有一個正根,則實(shí)數(shù)a的取值范圍是(  )

A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2

【答案】C

【解析】

根據(jù)方程x2-ax+a2-3=0至少有一個正根,則方程一定有兩個實(shí)數(shù)根,即△≥0,關(guān)于x的方程x2-ax+a2-3=0至少有一個正根?(1)當(dāng)方程有兩個相等的正根,(2)當(dāng)方程有兩個不相等的根,①若方程的兩個根中只有一個正根,一個負(fù)根或零根,②若方程有兩個正根,結(jié)合二次方程的根的情況可求.

∵△=a2-4(a2-3)=12-3a2
(1)當(dāng)方程有兩個相等的正根時,△=0,此時a=±2,
若a=2,此時方程x2-2x+1=0的根x=1符合條件,
若a=-2,此時方程x2+2x+1=0的根x=-1不符舍去,
(2)當(dāng)方程有兩個根時,△>0可得-2<a<2,
①若方程的兩個根中只有一個正根,一個負(fù)根或零根,則有a2-3≤0,解可得-≤a≤,而a=-時不合題意,舍去.
所以-<a≤符合條件,
②若方程有兩個正根,則
解可得 a>,
綜上可得,-<a≤2.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1

2

3

4

5

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黔東南州某校吳老師組織九(1)班同學(xué)開展數(shù)學(xué)活動,帶領(lǐng)同學(xué)們測量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,某天在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測得電線桿頂端A的仰角為30°,在C處測得電線桿頂端A得仰角為45°,斜坡與地面成60°角,CD=4m,請你根據(jù)這些數(shù)據(jù)求電線桿的高AB.

(結(jié)果精確到1m,參考數(shù)據(jù):1.4,1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮家距離學(xué)校8千米,昨天早晨,小亮騎車上學(xué)途中,自行車“爆胎”,恰好路邊有“自行車”維修部,幾分鐘后車修好了,為了不遲到,他加快了騎車到校的速度.回校后,小亮根據(jù)這段經(jīng)歷畫出如下圖象.該圖象描繪了小亮行的路程S與他所用的時間t之間的關(guān)系.請根據(jù)圖象,解答下列問題:

(1)小亮行了多少千米時,自行車“爆胎”?修車用了幾分鐘?

(2)小亮到校路上共用了多少時間?

(3)如果自行車沒有“爆胎”,一直用修車前的速度行駛,那么他比實(shí)際情況早到或晚到學(xué)校多少分鐘(精確到0.1)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作O,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.

(1)求拋物線的解析式;

(2)點(diǎn)E是AC延長線上一點(diǎn),BCE的平分線CD交O于點(diǎn)D,連結(jié)BD,求直線BD的解析式;

(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得PDB=CBD?如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AD8,CD4,點(diǎn)E從點(diǎn)D出發(fā),沿線段DA以每秒1個單位長的速度向點(diǎn)A方向移動,到達(dá)A點(diǎn)停止運(yùn)動;同時點(diǎn)F從點(diǎn)C出發(fā),沿射線CD方向以每秒2個單位長的速度移動,到達(dá)D點(diǎn)停止運(yùn)動,設(shè)點(diǎn)E移動的時間為t(秒).

1)當(dāng)t1時,求四邊形BCFE的面積;

2)設(shè)四邊形BCFE的面積為S,求St之間的關(guān)系式,并寫出t的取值范圍;

3)若F點(diǎn)到達(dá)D點(diǎn)后立即返回,并在線段CD上往返運(yùn)動,當(dāng)E點(diǎn)到達(dá)A點(diǎn)時它們同時停止運(yùn)動,求當(dāng)t為何值時,以E,FD三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,并求出此的等腰三角形的面積SEDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BP平分∠ABC,DBP上一點(diǎn),EF分別在BA,BC上,且滿足DEDF,若∠BED140°,則∠BFD的度數(shù)是(  )

A. 40°B. 50°C. 60°D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市為了回饋廣大新老客戶,元旦期間決定實(shí)行優(yōu)惠活動.方案一:非會員購物所有商品價格可獲九折優(yōu)惠;方案二:交納元會費(fèi)成為該超市的會員,所有商品價格可獲八折優(yōu)惠.

1)若用()表示商品價格,請你用含的式子分別表示兩種購物方案所付的錢數(shù).

2)當(dāng)商品價格是多少元時,兩種方案所付錢數(shù)相同?

3)若你計劃在該超市購買商品,請分析選擇哪種方案更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃在十周年慶典當(dāng)天開展購物抽獎活動,凡當(dāng)天在該超市購物的顧客,均有一次抽獎的機(jī)會,抽獎規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個扇形,分別標(biāo)上1,2,34四個數(shù)字,抽獎?wù)哌B續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,當(dāng)每次轉(zhuǎn)盤停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時,返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時,返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時返現(xiàn)金10元.

1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現(xiàn)的結(jié)果;

2)某顧客參加一次抽獎,能獲得返還現(xiàn)金的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案