【題目】問題背景
在數(shù)學活動課上,張老師要求同學們拿兩張大小不同的矩形紙片進行旋轉變換探究活動.如圖 1,在矩形紙片ABCD 和矩形紙片EFGH中,AB=1,AD=2,且FE>AD,FG>AB,點E 是 AD 的中點,矩形紙片 EFGH 以點E 為旋轉中心進行逆時針旋轉,在旋轉過程中會產生怎樣的數(shù)量關系,提出恰當?shù)臄?shù)學問題并加以解決.
解決問題
下面是三個學習小組提出的數(shù)學問題,請你解決這些問題.
(1)“奮進”小組提出的問題是:如圖 1,當 EF 與 AB 相交于點 M,EH 與 BC 相交于點 N 時,求證:EM=EN.
(2)“雄鷹”小組提出的問題是:在(1)的條件下,當 AM=CN 時,AM 與 BM 有怎樣的數(shù)量關系,請說明理由.
(3)“創(chuàng)新”小組提出的問題是:若矩形 EFGH 繼續(xù)以點 E 為旋轉中心進行逆時針旋轉,當 時,請你在圖 2 中畫出旋轉后的示意圖,并求出此時 EF 將邊 BC 分成的兩條線段的長度.
【答案】(1)證明見解析;(2)AM=BN;(3)EF 將邊 BC 分成的兩條線段的長度為 .
【解析】試題分析:(1)過點 E 作 ,垂足為點P,根據(jù)已知條件證出PE=AE,再證得∠PEN=∠AEM,進而得到△PEN≌△AEM,即可證得結論;(2)易證PN=CN= PC,進而求出PN=CN=,再判斷出AM=PN=,即可得出BM=,從而證得結論;(3)在Rt△PEM中,求出PM的長,再用線段的和差即可得出結論.
試題解析:
(1) 如圖1,過點 E 作 ,垂足為點 P,
則四邊形 ABPE 是矩形,∴PE=AB=1, ,
∵ 點 E 是 AD 的中點,∴ ,∴PE=AE,
∵ ,∴ ,
∵PE=AE, ,∴,∴EM=EN.
(2) 由(1)知, ,∴AM=PN,
∵AM=CN,∴PN=CN=PC,
∵ 四邊形 EPCD 是矩形,∴PC=DE=1,PN=CN=,
∴AM=PN=,BM=AB-AM=,∴AM=BN.
(3)如圖2,當∠AEF=60°時,
設EF與BC交于M,EH與CD交于N,過點E作EP⊥BC于P,連接EC,
由(1)知,CP=EP=1,AD∥BC,
∴∠EMP=∠AEF=60°,
在Rt△PEM中,PM=,
∴BM=BP﹣PM=1﹣,CM=PC+PM=1+,
∴EF將邊BC分成的兩條線段的長度為1﹣,1+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1在平面直角坐標系中.等腰Rt△OAB的斜邊OA在x軸上.P為線段OB上﹣動點(不與O,B重合).過P點向x軸作垂線.垂足為C.以PC為邊在PC的右側作正方形PCDM.OP=t,OA=3.設過O,M兩點的拋物線為y=ax2+bx.其頂點N(m,n)
(1)寫出t的取值范圍 ,寫出M的坐標:( , );
(2)用含a,t的代數(shù)式表示b;
(3)當拋物線開向下,且點M恰好運動到AB邊上時(如圖2)
①求t的值;
②若N在△OAB的內部及邊上,試求a及m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在初中階段的函數(shù)學習中,我們經(jīng)歷了“確定函數(shù)的表達式﹣﹣利用函數(shù)圖象研究其性質一運用函數(shù)解決問題“的學習過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學的函數(shù)圖象.同時,我們也學習了絕對值的意義|a|=.
結合上面經(jīng)歷的學習過程,現(xiàn)在來解決下面的問題:在函數(shù)y=|kx﹣1|+b中,當x=1時,y=3,當x=0時,y=4.
(1)求這個函數(shù)的表達式;
(2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數(shù)的圖象;
(3)已知函數(shù)y=的圖象如圖所示,結合你所畫的函數(shù)圖象,直接寫出不等式|kx﹣1|+b≥的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為促進課堂教學,提高教學質量,對七年級學生進行了一次“你最喜歡的課堂教學方式”的問卷調查.根據(jù)收回的問卷,學校繪制了如下圖表,請你根據(jù)圖表中提供的信息,解答下列問題.
編號 | 教學方式 | 最喜歡的頻數(shù) | 頻率 |
1 | 教師講,學生聽 | 20 | 0.10 |
2 | 教師提出問題,學生探索思考 | ||
3 | 學生自行閱讀教材,獨立思考 | 30 | |
4 | 分組討論,解決問題 | 0.25 |
(1)收回的問卷份數(shù)為 ,把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中編號1與編號4的圓心角分別是多少度?
(3)你最喜歡以上哪一種教學方式,請?zhí)岢瞿愕慕ㄗh,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是 ( )
A. 在 Rt△ABC中,若tanA=,則a=4,b=3
B. 在 Rt△ABC中,∠C=90°,則tanA+tanB=1
C. 在 Rt△ABC 中,∠C=90°,若a=3,b=4,則tanA=
D. tan75°=tan(45°+30°)=tan45°+tan30°=1+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(探究活動)
如圖1:已知直線a與b平行,直線c與直線a、b分別相交于點A. B,直線d與直線a、b分別相交于點C. D,點P在直線c上移動,連接PC、PD.探究∠CPD、∠PCA、∠PDB之間的數(shù)量關系.
(探究過程)
(1)當點P在點A. B之間移動時,如圖2,寫出∠CPD、∠PCA、∠PDB之間的關系,并說明理由.
(2)當點P在A. B兩點外移動時,如圖3,寫出∠CPD、∠PCA、∠PDB之間的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知、兩地相距50千米,甲于某日下午1時騎自行車從地出發(fā)駛往地,乙也在同日下午騎摩托車按同路從地出發(fā)駛往地,如圖所示,圖中的折線和線段分別表示甲、乙所行駛的路程(千米)與該日下午時間(時)之間的關系.根據(jù)圖象回答下列問題:
(1)甲出發(fā)___________小時后,乙才開始出發(fā);乙的速度為__________千米/時;甲騎自行車在全程的平均速度為__________千米/時;
(2)乙出發(fā)多少小時后就追上了甲?寫出解答過程;
(3)請你自己再提出一個符合題意的問題情境,并解答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸、軸分別交于點D、C,直線AB與軸交于點,與直線CD交于點.
(1)求直線AB的解析式;
(2)點E是射線CD上一動點,過點E作軸,交直線AB于點F,若以、、、為頂點的四邊形是平行四邊形,請求出點E的坐標;
(3)設P是射線CD上一動點,在平面內是否存在點Q,使以B、C、P、Q為頂點的四邊形是菱形?若存在,請直接寫出符合條件的點Q的個數(shù)及其中一個點Q的坐標;否則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com