(2011湖南衡陽,24,8分)如圖,△ABC內(nèi)接于⊙O,CA=CB,CDAB且與OA的延長(zhǎng)線交與點(diǎn)D
(1)判斷CD與⊙O的位置關(guān)系并說明理由;
(2)若∠ACB=120°,OA=2,求CD的長(zhǎng).
【解】 (1) CD與⊙O的位置關(guān)系是相切,理由如下:
作直徑CE,連結(jié)AE
CE是直徑,∴∠EAC=90°,∴∠E+∠ACE=90°,
CA=CB,∴∠B=∠CAB,∵ABCD,
∴∠ACD=∠CAB,∵∠B=∠E,∠ACD=∠E,
∴∠ACE+∠ACD=90°,即∠DCO=90°,
OCD C,∴CD與⊙O相切.
(2)∵CDAB,OCD C,∴OCA B,
又∠ACB=120°,∴∠OCA=∠OCB=60°,
OA=OC,∴△OAC是等邊三角形,
∴∠DOA=60°,
∴在RtDCO中, =,
DC=OC=OA=2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠CDB=30°,⊙O的半徑為cm,
則弦CD的長(zhǎng)為   
A.cmB.3cm
C.cmD.9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

.如圖13,D為O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)求證:CD是O的切線;
(2)過點(diǎn)B作O的切線交CD的延長(zhǎng)線于點(diǎn)E,若BC=6,tan∠CDA=,求BE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,BC是⊙O的弦,圓周角 ∠BAC=500,則∠OCB的度數(shù)是      度 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·臺(tái)州)如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為點(diǎn)M,AB=20,分
別以CM、DM為直徑作兩個(gè)大小不同的⊙O1和⊙O2,則圖中陰影部分的面積為       (結(jié)
果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011貴州安順,8,3分)在RtABC中,斜邊AB =4,∠B= 60°,將△ABC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°,頂點(diǎn)C運(yùn)動(dòng)的路線長(zhǎng)是(     )
A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑0C為2,則弦BC的長(zhǎng)為( 。
A.1
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
如圖14①至圖14④中,兩平行線AB、CD音的距離均為6,點(diǎn)MAB上一定點(diǎn).
思考:如圖14①中,圓心為O的半圓形紙片在AB、CD之間(包括AB、CD),其直徑MN在AB上,MN=8,點(diǎn)P為半圓上一點(diǎn),設(shè)∠MOP=α,當(dāng)α=________度時(shí),點(diǎn)PCD的距離最小,最小值為____________.
探究一在圖14①的基礎(chǔ)上,以點(diǎn)M為旋轉(zhuǎn)中心,在AB、CD之間順時(shí)針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動(dòng)為止.如圖14②,得到最大旋轉(zhuǎn)角∠BMO=_______度,此時(shí)點(diǎn)NCD的距離是______________.
探究二將圖14①中的扇形紙片NOP按下面對(duì)α的要求剪掉,使扇形紙片MOP繞點(diǎn)MAB、CD之間順時(shí)針旋轉(zhuǎn).
⑴如圖14③,當(dāng)α=60°時(shí),求在旋轉(zhuǎn)過程中,點(diǎn)PCD的最小距離,并請(qǐng)指出旋轉(zhuǎn)角∠BMO的最大值:
⑵如圖14④,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點(diǎn)P能落在直線CD上,請(qǐng)確定α的取值范圍.
(參考數(shù)據(jù):sin49°=,cos41°=tan37°=
            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·西寧)(本小題滿分10分)已知:如圖,BD為⊙O的直徑,ABAC,ADBCE,AE=2,ED=4.
(1)求證:△ABE∽△ADB;
(2)求AB的長(zhǎng);
(3)延長(zhǎng)DBF,使BFOB,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案