【題目】如圖8,AB兩地之間有一座山,以前從A地到B地需要經(jīng)過C.現(xiàn)在政府出資打通了一條山嶺隧道,使從A地到B地可沿直線AB直接到達.已知BC=8km,∠A=45°,∠B=53°.

(1)求點C到直線AB的距離;

(2)求現(xiàn)在從A地到B地可比原來少走多少路程?(結(jié)果精確到0.1km;參考數(shù)據(jù):≈1.41,sin53°≈0.80,cos53°≈0.60)

【答案】(1) 6.4km; (2) 5.9km路程.

【解析】分析:

(1)如下圖,過點CCE⊥AB于點E,這樣在Rt△BCE中,由sinB=結(jié)合已知條件即可求得點CAB的距離了;

(2)在Rt△BCERt△ACE中,由已知條件利用直角三角形中邊角間的關(guān)系分別求出BE、AEAC的長,即可使問題得到解決.

詳解:

(1)過點CCE⊥AB,垂足為點E(如圖1),

Rt△BCE中,=sin∠B,

∴CE=BC·sin∠B≈8×0.80=6.4

答:C點到直線AB的距離約為6.4km;

(2)Rt△BCE中,=cos∠B,

∴BE=BC·cos∠B≈8×0.60=4.8,

Rt△ACE中,∵∠A=45°,∴∠ACE=45°,

∴AE=CE=6.4,

=sin∠A

AC=≈9.05,

AC+BC-(AE+EB)=9.05+8-(6.4+4.8)=5.85≈5.9,

:現(xiàn)在從A地到B地可比原來少走5.9km路程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點D、E分別在BC、AC上,且BD=CE,ADBE相交于點F.

(1)試說明△ABD≌△BCE;

(2)△EAF△EBA相似嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市自實施《生活垃圾分類和減量管理辦法》以來,生活垃圾分類和減量工作取得了一定的成效,環(huán)保部門為了提高 宣傳實效,隨機抽樣調(diào)查了100戶居民8月的生活垃圾量,并繪制成不完整的扇形統(tǒng)計圖,請你根據(jù)圖中的信息解答下列問題

1)請將條形統(tǒng)計圖22-1)補充完整.

2)在圖22-2)的扇形統(tǒng)計圖中,求表示“有害垃圾C”所在扇形的圓心角的度數(shù).

3)根據(jù)統(tǒng)計,8月所抽查的居民產(chǎn)生的生活垃圾總量為2750kg,則其中為可回收垃圾約為多少kg?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市設(shè)計的長方形休閑廣場如圖所示,兩端是兩個半圓形的花壇,中間是一個直徑為長方形寬度一半的圓形噴水池.

(1)用圖中所標(biāo)字母表示廣場空地(圖中陰影部分)的面積.

(2)若休閑廣場的長為90米,寬為40米,求廣場空地的面積(計算結(jié)果保留π.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計劃生產(chǎn)兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件產(chǎn)品需甲種材料4千克;生產(chǎn)一件產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155.

1)甲、乙兩種材料每千克分別是多少元?

2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過9900元,且生產(chǎn)產(chǎn)品不少于38件,問符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?

3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費40元,生產(chǎn)一件產(chǎn)品需加工費50元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費+加工費)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,EAB 的中點,連接DE并延長交CB 的延長線于點F,點GBC邊上,且GDF ADF .

(1)求證:ADE BFE

(2)連接EG ,判斷EG DF 的位置關(guān)系,并說明理由;

(3)若CDF 90,DF 4CD 3 , CF 5 ,求RtCDF的三條角平分線的交點O 到邊CF的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標(biāo)為(2,3),點B的坐標(biāo)為(n,1).

(1)求n的值,并結(jié)合圖象,直接寫出不等式<kx+b的解集;

(2)點Ex軸上一個動點,若SAEB=6,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程(組)與不等式(組)是代數(shù)的重要組成部分,也是解決數(shù)學(xué)問題的重要工具,請利用所學(xué),解決以下 3 個問題:

(1)當(dāng) k 為何整數(shù)時,關(guān)于 x , y 的方程組 的解滿足 x y x y 4 ;

(2)已知正整數(shù) a ,使得關(guān)于 x y 的方程組的解是整數(shù),解關(guān)于 x 的不等式;

3)已知 x ,y z 3 個非負實數(shù),且滿足3x 2 y z 5 x y z 2 ,記 S 2x y z對于符合題意的任意實數(shù) S ,不等式 2m S 3 始終成立,試確定 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在紙面上有一數(shù)軸,如圖所示,點O為原點,點A1、A2A3、分別表示有理數(shù)1、23、,點B1、B2、B3、分別表示有理數(shù)﹣1、﹣2、﹣3、

1)折疊紙面:

①若點A1與點B1重合,則點B2與點   重合;

②若點B1與點A2重合,則點A5與有理數(shù)   對應(yīng)的點重合;

③若點B1A3重合,當(dāng)數(shù)軸上的M、NMN的左側(cè))兩點之間的距離為9,且M、N兩點經(jīng)折疊后重合時,則M、N兩點表示的有理數(shù)分別是   ,   ;

2)拓展思考:

A在數(shù)軸上表示的有理數(shù)為a,用|a|表示點A到原點O的距離.

|a1|是表示點A到點   的距離;

②若|a1|3,則有理數(shù)a   

③若|a1|+|a+2|5,則有理數(shù)a   

查看答案和解析>>

同步練習(xí)冊答案