Rt△ABC中,已知AB=6,AC=8,則斜邊BC的中線AD長是________.

5
分析:在直角三角形中,已知兩直角邊根據(jù)勾股定理可以求得斜邊的長度,根據(jù)斜邊的中線長等于斜邊長的一半即可解題.
解答:在Rt△ABC中,AB=6,AC=8,
則斜邊BC==10,
則斜邊BC的中線AD的長為=5.
故答案為 5.
點評:本題考查了勾股定理在直角三角形中的應(yīng)用,考查了斜邊中線長是斜邊長的一半的性質(zhì),本題中正確的計算BC的長是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在Rt△ABC中,已知∠B=90°,AB=6,BC=8,D,E,F(xiàn)分別是三邊AB,BC,CA上的點,則DE+EF+FD的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,已知∠ABC=90°,BC=8,以AB為直徑作⊙O,連接OC,過點C作⊙O的切線CD,D為切點,連接OD.
(1)求證:△OBC≌△ODC;
(2)若sin∠OCD=
35
,求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知直角邊AC是另一直角邊BC的2倍,則tanA的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,已知tanB=2,則sinA的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列命題中,正確的有( 。
①Rt△ABC中,已知兩邊長分別為3和4,則第三邊長為5;
②有一個內(nèi)角等于其他兩個內(nèi)角和的三角形是直角三角形;
③三角形的三邊分別為a,b,C,若a2+c2-b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,則△ABC是直角三角形.

查看答案和解析>>

同步練習(xí)冊答案