【題目】如圖,一拋物線(xiàn)型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時(shí),水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為米.

【答案】2
【解析】解:如圖,

建立平面直角坐標(biāo)系,設(shè)橫軸x通過(guò)AB,縱軸y通過(guò)AB中點(diǎn)O且通過(guò)C點(diǎn),則通過(guò)畫(huà)圖可得知O為原點(diǎn),

拋物線(xiàn)以y軸為對(duì)稱(chēng)軸,且經(jīng)過(guò)A,B兩點(diǎn),OA和OB可求出為AB的一半2米,拋物線(xiàn)頂點(diǎn)C坐標(biāo)為(0,2),

通過(guò)以上條件可設(shè)頂點(diǎn)式y(tǒng)=ax2+2,其中a可通過(guò)代入A點(diǎn)坐標(biāo)(﹣2,0),

到拋物線(xiàn)解析式得出:a=﹣0.5,所以?huà)佄锞(xiàn)解析式為y=﹣0.5x2+2,

當(dāng)水面下降1米,通過(guò)拋物線(xiàn)在圖上的觀察可轉(zhuǎn)化為:

當(dāng)y=﹣1時(shí),對(duì)應(yīng)的拋物線(xiàn)上兩點(diǎn)之間的距離,也就是直線(xiàn)y=﹣1與拋物線(xiàn)相交的兩點(diǎn)之間的距離,

可以通過(guò)把y=﹣1代入拋物線(xiàn)解析式得出:

﹣1=﹣0.5x2+2,

解得:x=± ,

所以水面寬度增加到2 米,

所以答案是:2 米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α是銳角,且sin(α﹣15°)= 計(jì)算: ﹣4cosα﹣(π﹣3.14)0+tanα+( ﹣1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,萬(wàn)州市居民生活用水按階梯式水價(jià)計(jì)費(fèi),表是該市居民“一戶(hù)一表”生活用水階梯式計(jì)費(fèi)價(jià)格表的一部分信息:(水價(jià)計(jì)費(fèi)自來(lái)水銷(xiāo)售費(fèi)用污水處理費(fèi)用)

自來(lái)水銷(xiāo)售價(jià)格

污水處理價(jià)格

每戶(hù)每月用水量

單價(jià):元

單價(jià):元

17噸及以下

0.80

超過(guò)17噸不超過(guò)30噸的部分

0.80

超過(guò)30噸的部分

6.00

0.80

說(shuō)明:①每戶(hù)產(chǎn)生的污水量等于該戶(hù)的用水量,②水費(fèi)=自來(lái)水費(fèi)+污水處理費(fèi);

已知小明家20133月份用水20噸,交水費(fèi)66元;5月份用水25噸,交水費(fèi)91元.

1)求,的值.

2)隨著夏天的到來(lái),用水量將增加。為了節(jié)省開(kāi)支,小夢(mèng)計(jì)劃把6月份的水費(fèi)控制在不超過(guò)家庭月收入的2%,若小夢(mèng)加的月收入為9200元,則小王家6月份最多能用水多少?lài)崳?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小聰和小明沿同一條筆直的馬路同時(shí)從學(xué)校出發(fā)到某圖書(shū)館查閱資料,學(xué)校與 圖書(shū)館的路程是 千米,小聰騎自行車(chē),小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到 達(dá)圖書(shū)館,圖中折線(xiàn) 和線(xiàn)段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過(guò)的 時(shí)間 (分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖像回答下列問(wèn)題:

(1)小聰在圖書(shū)館查閱資料的時(shí)間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.

(2)請(qǐng)你求出小明離開(kāi)學(xué)校的路程 (千米)與所經(jīng)過(guò)的時(shí)間 (分鐘)之間的函數(shù)表達(dá)式;

(3)若設(shè)兩人在路上相距不超過(guò) 千米時(shí)稱(chēng)為可以“互相望見(jiàn)”,則小聰和小明可以“互相 望見(jiàn)”的時(shí)間共有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)專(zhuān)賣(mài)店銷(xiāo)售A,B兩種型號(hào)的新能源汽車(chē).上周售出1輛A型車(chē)和3輛B型車(chē),銷(xiāo)售額為96萬(wàn)元;本周已售2輛A型車(chē)和1輛B型車(chē),銷(xiāo)售額為62萬(wàn)元.

(1)求每輛A型車(chē)和B型車(chē)的售價(jià)各多少萬(wàn)元.

(2)甲公司擬向該店購(gòu)買(mǎi)A,B兩種型號(hào)的新能源汽車(chē)共6,購(gòu)車(chē)費(fèi)不少于130萬(wàn)元,且不超過(guò)140萬(wàn)元. 則有哪幾種購(gòu)車(chē)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸、y軸上,OA=3,OB=4,連接AB.點(diǎn)P在平面內(nèi),若以點(diǎn)P、A、B為頂點(diǎn)的三角形與△AOB全等(點(diǎn)P與點(diǎn)O不重合),則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AMBN,∠A=60°,點(diǎn)P是射線(xiàn)AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線(xiàn)AM于點(diǎn)C,D


1)求∠CBD的度數(shù);
2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB:∠ADB的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;
3)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=ABD,求此時(shí)∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線(xiàn)ED經(jīng)過(guò)點(diǎn)C,過(guò)AADED于點(diǎn)D,過(guò)BBEED于點(diǎn)E.
求證:BEC≌△CDA;
(模型應(yīng)用)
(2)①已知直線(xiàn)l1:y=x+4與坐標(biāo)軸交于點(diǎn)A、B,將直線(xiàn)l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45o至直線(xiàn)l2,如圖2,求直線(xiàn)l2的函數(shù)表達(dá)式;
②如圖3,長(zhǎng)方形ABCO,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(8,-6),點(diǎn)A、C分別在坐標(biāo)軸上,點(diǎn)P是線(xiàn)段BC上的動(dòng)點(diǎn),點(diǎn)D是直線(xiàn)y=-2x+6上的動(dòng)點(diǎn)且在第四象限.若APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李師傅負(fù)責(zé)修理我校課桌椅,現(xiàn)知道李師傅修理2張課桌和3把椅子共需86分鐘,修理5張課桌和2把椅子共需149分鐘.

1)請(qǐng)問(wèn)李師傅修理1張課桌和1把椅子各需多少分鐘

2)現(xiàn)我校有12張課桌和14把椅子需要修理,要求1天做完,李師傅每天工作8小時(shí),請(qǐng)問(wèn)李師傅能在上班時(shí)間內(nèi)修完嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案