精英家教網(wǎng)已知:如圖,O為平面直角坐標(biāo)系的原點(diǎn),半徑為1的⊙B經(jīng)過點(diǎn)O,且與x,y軸分交于點(diǎn)A,C,點(diǎn)A的坐標(biāo)為(-
3
,0),AC的延長(zhǎng)線與⊙B的切線OD交于點(diǎn)D.
(1)求OC的長(zhǎng)和∠CAO的度數(shù);
(2)求過D點(diǎn)的反比例函數(shù)的表達(dá)式.
分析:(1)在直角三角形ACO中,根據(jù)已知條件可以求得OA,AC的長(zhǎng),再根據(jù)勾股定理求得OC的長(zhǎng),根據(jù)銳角三角函數(shù)的概念求得∠CAO的度數(shù);
(2)要求反比例函數(shù)的表達(dá)式,需要求得點(diǎn)D的坐標(biāo).作DE⊥x軸于點(diǎn)E,根據(jù)對(duì)頂角相等和弦切角定理可以求得∠DOE=60°.所以只需再求得OD的長(zhǎng),根據(jù)三角形的外角的性質(zhì)可以求得∠ADO=30°.則OD=OA.從而求得OE,DE的長(zhǎng),再根據(jù)點(diǎn)D的坐標(biāo)求得反比例函數(shù)的表達(dá)式.
解答:精英家教網(wǎng)解:(1)∵∠AOC=90°,
∴AC是⊙B的直徑.
∴AC=2.
又∵點(diǎn)A的坐標(biāo)為(-
3
,0),
∴OA=
3

OC=
AC2-OA2
=
22-(
3
)
2
=1

∴sin∠CAO=
OC
AC
=
1
2

∴∠CAO=30°;

(2)如圖,連接OB,過點(diǎn)D作DE⊥x軸于點(diǎn)E,
∵OD為⊙B的切線,
∴OB⊥OD.
∴∠BOD=90°.
∵AB=OB,
∴∠AOB=∠OAB=30°.
∴∠AOD=∠AOB+∠BOD=30°+90°=120°.
在△AOD中,∠ODA=180°-120°-30°=30°=∠OAD.
∴OD=OA=
3

在Rt△DOE中,∠DOE=180°-120°=60°,
∴OE=OD•cos60°=
1
2
OD=
3
2
,ED=OD•sin60°=
3
2

∴點(diǎn)D的坐標(biāo)為(
3
2
,
3
2
)

設(shè)過D點(diǎn)的反比例函數(shù)的表達(dá)式為y=
k
x
,
k=
3
2
×
3
2
=
3
3
4

y=
3
3
4x
點(diǎn)評(píng):此題主要是運(yùn)用了30度的直角三角形的性質(zhì)、切線的性質(zhì)和等腰三角形的判定和性質(zhì),綜合性較強(qiáng),同學(xué)們要重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,O為平面直角坐標(biāo)系的原點(diǎn),半徑為1的⊙B經(jīng)過點(diǎn)O,且與x,y軸分交于點(diǎn)A,C,點(diǎn)A的坐標(biāo)為(
3
,0)
,AC的延長(zhǎng)線與⊙B的切線OD交于點(diǎn)D.
(1)求OC的長(zhǎng)和∠CAO的度數(shù);
(2)求過D點(diǎn)的反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)對(duì)于正數(shù)x,規(guī)定f(x)=
x
1+x
,例如f(3)=
3
1+3
=
3
4
,f(
1
3
)=
1
3
1+
1
3
=
1
4

計(jì)算:f(
1
2009
)
+f(
1
2008
)+f(
1
2007
)+…+f(
1
3
)+f(
1
2
)+f(1)+f(2)+f(3)+…+f(2007)+f(2008)+f(2009)
(2)已知:如圖,O為平面直角坐標(biāo)系的原點(diǎn),半徑為1的⊙B經(jīng)過點(diǎn)O,且與x,y軸分交于點(diǎn)A,C,點(diǎn)A的坐標(biāo)為(-
3
,0)
,AC的延長(zhǎng)線與⊙B的切線OD交于點(diǎn)D.求∠CAO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河南省南陽(yáng)市宛城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:如圖,O為平面直角坐標(biāo)系的原點(diǎn),半徑為1的⊙B經(jīng)過點(diǎn)O,且與x,y軸分交于點(diǎn)A,C,點(diǎn)A的坐標(biāo)為,AC的延長(zhǎng)線與⊙B的切線OD交于點(diǎn)D.
(1)求OC的長(zhǎng)和∠CAO的度數(shù);
(2)求過D點(diǎn)的反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河南省鄭州市新密市九年級(jí)保送生考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,O為平面直角坐標(biāo)系的原點(diǎn),半徑為1的⊙B經(jīng)過點(diǎn)O,且與x,y軸分交于點(diǎn)A,C,點(diǎn)A的坐標(biāo)為,AC的延長(zhǎng)線與⊙B的切線OD交于點(diǎn)D.
(1)求OC的長(zhǎng)和∠CAO的度數(shù);
(2)求過D點(diǎn)的反比例函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案