在直角坐標(biāo)系xOy 中,已知某二次函數(shù)的圖象經(jīng)過A(-4,0)、B(0,-3),與x軸的正半軸相交于點(diǎn)C,若△AOB∽△BOC(相似比不為1).
1.(1)求這個(gè)二次函數(shù)的解析式;
2.(2)求△ABC的外接圓半徑r;
3.(3)在線段AC上是否存在點(diǎn)M(m,0),使得以線段BM為直徑的圓與線段AB交于N點(diǎn),且以點(diǎn)O、A、N為頂點(diǎn)的三角形是等腰三角形?若存在,求出m的值;若不存在,請(qǐng)說明理由.
1.⑴∵△AOB∽△BOC(相似比不為1),
∴. 又∵OA=4, OB=3,
∴OC=32×=. ∴點(diǎn)C(, 0). …………………1分
設(shè)圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)解析式是y=ax2+bx+c,
則c= -3,且 …………………2分
即
解得,a=, b=.
∴這個(gè)函數(shù)的解析式是y =x2+x-3.
2.⑵∵△AOB∽△BOC(相似比不為1),
∴∠BAO=∠CBO.
又∵∠ABO+ ∠BAO =90°,
∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分
∴AC是△ABC外接圓的直徑.
∴ r =AC=×[-(-4)]=.
3.⑶∵點(diǎn)N在以BM為直徑的圓上,
∴ ∠MNB=90°. ……………………6分
①. 當(dāng)AN=ON時(shí),點(diǎn)N在OA的中垂線上,
∴點(diǎn)N1是AB的中點(diǎn),M1是AC的中點(diǎn).
∴AM1= r =,點(diǎn)M1(-, 0),即m1= -. ………………7分
②. 當(dāng)AN=OA時(shí),Rt△AM2N2≌Rt△ABO,
∴AM2=AB=5,點(diǎn)M2(1, 0),即m2=1.
③. 當(dāng)ON=OA時(shí),點(diǎn)N顯然不能在線段AB上.
綜上,符合題意的點(diǎn)M(m,0)存在,有兩解:
m= -,或1.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 |
6 |
1 |
6 |
5 |
36 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com