化簡:,并求出a=時(shí)代數(shù)式的值.
【答案】分析:首先把括號里因式進(jìn)行通分,然后把除法運(yùn)算轉(zhuǎn)化成乘法運(yùn)算,進(jìn)行約分化簡,最后代值計(jì)算.
解答:解:原式=,
當(dāng)a=時(shí),
原式==2-
點(diǎn)評:主要考查了分式的化簡求值問題.分式的四則運(yùn)算是整式四則運(yùn)算的進(jìn)一步發(fā)展,是有理式恒等變形的重要內(nèi)容之一.在計(jì)算時(shí),首先要弄清楚運(yùn)算順序,先去括號,再進(jìn)行分式的乘除運(yùn)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

化簡:數(shù)學(xué)公式,并求出a=數(shù)學(xué)公式時(shí)代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 根據(jù)對北京市相關(guān)的市場物價(jià)調(diào)研,預(yù)計(jì)進(jìn)入夏季后的某一段時(shí)間,某批發(fā)市場內(nèi)的

甲種蔬菜的銷售利潤y1(千元)與進(jìn)貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進(jìn)貨量x(噸)之間的函數(shù)的圖象如圖②所示.

(1)分別求出y1、y2x之間的函數(shù)關(guān)系式;

(2)如果該市場準(zhǔn)備進(jìn)甲、乙兩種蔬菜共10噸,設(shè)乙種蔬菜的進(jìn)貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種蔬菜各進(jìn)多少噸時(shí)獲得的銷售利潤之和最大,最大利潤是多少?

 

 

 

 

【解析】(1)y1=kx的圖象過點(diǎn)(3,5.),求出k,y2=ax2+bx的圖象過點(diǎn)(1,2),(5,6) 求出a,b

(2)由等量關(guān)系“兩種蔬菜所獲得的銷售利潤之和=甲種蔬菜的銷售利潤+乙種蔬菜的銷售利潤”即可列出函數(shù)關(guān)系式;

用配方法化簡函數(shù)關(guān)系式即可求出w的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年中考數(shù)學(xué)模擬檢測試卷(2)(解析版) 題型:解答題

(2012•潮安縣模擬)化簡:,并求出a=時(shí)代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽區(qū)中考一模數(shù)學(xué)卷(解析版) 題型:解答題

 根據(jù)對北京市相關(guān)的市場物價(jià)調(diào)研,預(yù)計(jì)進(jìn)入夏季后的某一段時(shí)間,某批發(fā)市場內(nèi)的

甲種蔬菜的銷售利潤y1(千元)與進(jìn)貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進(jìn)貨量x(噸)之間的函數(shù)的圖象如圖②所示.

(1)分別求出y1、y2x之間的函數(shù)關(guān)系式;

(2)如果該市場準(zhǔn)備進(jìn)甲、乙兩種蔬菜共10噸,設(shè)乙種蔬菜的進(jìn)貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種蔬菜各進(jìn)多少噸時(shí)獲得的銷售利潤之和最大,最大利潤是多少?

 

 

 

 

【解析】(1)y1=kx的圖象過點(diǎn)(3,5.),求出k,y2=ax2+bx的圖象過點(diǎn)(1,2),(5,6) 求出a,b

(2)由等量關(guān)系“兩種蔬菜所獲得的銷售利潤之和=甲種蔬菜的銷售利潤+乙種蔬菜的銷售利潤”即可列出函數(shù)關(guān)系式;

用配方法化簡函數(shù)關(guān)系式即可求出w的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案