分析 根據(jù)線段垂直平分線的性質可知AB=OB,由此推出△ABC的周長=OC+AC,設OC=a,AC=b,根據(jù)勾股定理和函數(shù)解析式即可得到關于a、b的方程組,解之即可求出△ABC的周長.
解答 解:∵OA的垂直平分線交OC于B,
∴AB=OB,
∴△ABC的周長=OC+AC,
設OC=a,AC=b,
則:$\left\{\begin{array}{l}{ab=4}\\{{a}^{2}+^{2}=16}\end{array}\right.$,
解得 a+b=2$\sqrt{6}$,即△ABC的周長=OC+AC=2$\sqrt{6}$.
故答案是:2$\sqrt{6}$.
點評 本題考查反比例函數(shù)圖象性質和線段中垂線性質,以及勾股定理的綜合應用,關鍵是一個轉換思想,即把求△ABC的周長轉換成求OC+AC即可解決問題.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com