【題目】仔細(xì)閱讀材料,再嘗試解決問題:
完全平方式 以及的值為非負(fù)數(shù)的特點(diǎn)在數(shù)學(xué)學(xué)習(xí)中有廣泛的應(yīng)用,比如探求的最大(。┲禃r,我們可以這樣處理:
例如:①用配方法解題如下:
原式=+6x+9+1=
因為無論取什么數(shù),都有的值為非負(fù)數(shù),所以的最小值為0;此時 時,進(jìn)而的最小值是0+1=1;所以當(dāng)時,原多項式的最小值是1.
請根據(jù)上面的解題思路,探求:
(1)若(x+1)2+(y-2)2=0,則x= ,y= ..
(2)若x2+y2+6x-4y+13=0,求x,y的值;
(3)求的最小值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與AC相切于點(diǎn)A,且AB=AC,BC與⊙O相交于點(diǎn)D,下列說法不正確的是().
A. ∠C = 45° B. CD=BD C. ∠BAD=∠DAC D. CD=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.試判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,以AB為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接OD、DE.
⑴ 求證:OD⊥DE.
⑵ 若∠BAC=30°,AB=8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若如圖,已知AD∥BC,按要求完成下列各小題(保留作圖痕跡,不要求寫作法).
(1)用直尺和圓規(guī)作出∠BAD的平分線AP,交BC于點(diǎn)P.
(2)在(1)的基礎(chǔ)上,若∠APB=55°,求∠B的度數(shù).
(3)在(1)的基礎(chǔ)上,E是AP的中點(diǎn),連接BE并延長,交AD于點(diǎn)F,連接PF.求證:四邊形ABPF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,池塘邊有塊長為20m,寬為10m的長方形土地,現(xiàn)在將其余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用含x的式子表示:
(1)菜地的長a= m,菜地的寬b= m;菜地的周長C= m;
(2)求當(dāng)x=1m時,菜地的周長C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M,N分別是正五邊形ABCDE的邊BC,CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點(diǎn)O(點(diǎn)O也是BD中點(diǎn))按順時針方向旋轉(zhuǎn).
(1)如圖2,當(dāng)EF與AB相交于點(diǎn)M,GF與BD相交于點(diǎn)N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關(guān)系,并證明你的猜想;
(2)若三角尺GEF旋轉(zhuǎn)到如圖3所示的位置時,線段FE的延長線與AB的延長線相交于點(diǎn)M,線段BD的延長線與GF的延長線相交于點(diǎn)N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com