【題目】如圖1,現(xiàn)有一個(gè)長(zhǎng)方體水槽放在桌面上,從水槽內(nèi)量得它的側(cè)面高20cm,底面的長(zhǎng)25cm,寬20cm,水槽內(nèi)水的高度為acm,往水槽里放入棱長(zhǎng)為10cm的立方體鐵塊.
(1)求下列兩種情況下a的值.
①若放入鐵塊后水面恰好在鐵塊的上表面;
②若放入鐵塊后水槽恰好盛滿(無(wú)溢出).
(2)若0<a≤18,求放入鐵塊后水槽內(nèi)水面的高度(用含a的代數(shù)式表示).
(3)如圖2,在水槽旁用管子連通一個(gè)底面在桌面上的圓柱形容器,內(nèi)部底面積為50cm2,管口底部A離水槽內(nèi)底面的高度為hcm(h>a),水槽內(nèi)放入鐵塊,水溢入圓柱形容器后,容器內(nèi)水面與水槽內(nèi)水面的高度差為8.2cm,若a=15,求h的值.(水槽和容器的壁及底面厚度相同)
【答案】(1)①a=8;②a=18;(2)1.25a或a+2;(3)h=16.2.
【解析】
(1)①根據(jù)題意列出方程得出a的值即可;②根據(jù)題意列出方程得出a的值即可;(2)設(shè)放入鐵塊后水槽內(nèi)水面的高度為xcm,根據(jù)題意列出方程解答即可;(3)根據(jù)題意得出方程解答即可.
(1)①由題意得:25×20×a=25×20×10-103,
解得:a=8,
②25×20×20=103+25×20×a,
解得:a=18,
(2)設(shè)放入鐵塊后水槽內(nèi)水面的高度為xcm,
當(dāng)0<a≤8時(shí),由題意得:25×20x=10×10x+25×20×a,
解得:x=1.25a,
當(dāng)8<a≤18時(shí),由題意得:25×20x=103+25×20×a,
解得:x=a+2;
(3)由題意得:50(h-8.2)=500(15+2-h)
解得:h=16.2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交于A,B兩點(diǎn),點(diǎn)A和點(diǎn)B的橫坐標(biāo)分別為1和﹣2,這兩點(diǎn)的縱坐標(biāo)之和為1.
(1)求反比例函數(shù)的表達(dá)式與一次函數(shù)的表達(dá)式;
(2)當(dāng)點(diǎn)C的坐標(biāo)為(0,﹣1)時(shí),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖中二次函數(shù)解析式為y=ax2+bx+c(a≠0)則下列命題中正確的有(填序號(hào))
①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為4的大正方形ABCD內(nèi)有一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P以每秒1cm的速度從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B停止(不含點(diǎn)A和點(diǎn)B).設(shè)△ABP的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.
(1)小穎通過(guò)認(rèn)真的觀察分析,得出了一個(gè)正確的結(jié)論:當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),存在著“同底等高”的現(xiàn)象,因此當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí)△ABP的面積S始終不發(fā)生變化.
問:在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,還存在類似的現(xiàn)象嗎?若存在,請(qǐng)說(shuō)出P的位置;若不存在,請(qǐng)說(shuō)明理由.
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中△ABP的面積S是否存在最大值?若存在,請(qǐng)求出最大面積;若不存在,請(qǐng)說(shuō)明理由.
(3)請(qǐng)寫出S與t之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一直角三角形紙片,∠C=90°,BC=6,AC=8,現(xiàn)將△ABC按如圖那樣折疊,使點(diǎn)A與點(diǎn)B重合,折痕為DE,則CE的長(zhǎng)為( 。
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直徑AE平分弦CD,交CD于點(diǎn)G,EF∥CD,交AD的延長(zhǎng)線于F,AP⊥AC交CD的延長(zhǎng)線于點(diǎn)P.
(1)求證:EF是⊙O的切線;
(2)若AC=2,PD= CD,求tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把四張大小相同的長(zhǎng)方形卡片(如圖①)按圖②、圖③兩種放法放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)比寬多6)的盒底上,底面未被卡片覆蓋的部分用陰影表示,若記圖②中陰影部分的周長(zhǎng)為C2,圖③中陰影部分的周長(zhǎng)為C3,則C2-C3=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,建筑工人砌墻時(shí),經(jīng)常在兩個(gè)墻腳的位置分別插一根木樁,然后拉一條直的參照線,其運(yùn)用到的數(shù)學(xué)原理是( )
A.兩點(diǎn)之間,線段最短
B.兩點(diǎn)確定一條直線
C.垂線段最短
D.過(guò)一點(diǎn)有且只有一條直線和已知直線平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°,
(1)求證;BF∥DE.
(2)如果DE⊥AC于點(diǎn)E,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com