【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數據是甲、乙、丙三人每人十次墊球測試的成績,測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.
運動員甲測試成績表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)小明將三人的成績整理后制作了下面的表格:
平均數 | 中位數 | 眾數 | 方差 | |
甲 | 7 | b | 7 | 0.8 |
乙 | 7 | 7 | d | 0.4 |
丙 | a | c | e | 0.81 |
則表中a= ,b= ,c= ,d= ,e= .
(2)若在他們三人中選擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?請作出簡要分析.
【答案】(1)6.3,7,6,7,6;(2)選乙運動員更合適.
【解析】
(1)根據平均數、中位數、眾數的定義進行計算即可.(2)根據平均數、中位數、眾數接近,方差越小,數據波動越小,成績越優(yōu)秀進行判斷即可.
(1)運動員甲測試成績按從小到大的順序排列為:5,6,7,7,7,7,7,8,8,8,所以中位數b=(7+7)÷2=7.
運動員乙測試成績中,數據7出現了5次,次數最多,所以眾數d=7.
運動員丙測試成績的平均數為a=(2×5+4×6+3×7+1×8)=6.3,中位數c=(6+6)÷2=6,眾數e=6;
故答案是:6.3,7,6,7,6;
(2)∵甲、乙、丙三人的眾數為7;7;6,
甲、乙、丙三人的中位數為7;7;6,
甲、乙、丙三人的平均數為7;7;6.3,
∴甲、乙比丙優(yōu)秀一些,
∵S甲2>S乙2,
∴選乙運動員更合適.
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2:按上述方法不斷操作下去…,經過第2019次操作后得到的折痕D2018E2018,到BC的距離記為h2019:若h1=1,則h2019的值為(____)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B. F. C.E在一條直線上(點F,C之間不能直接測量),點A,D在直線l的異側,測得AB=DE,AB∥DE,AC∥DF.
(1)求證:△ABC≌△DEF;
(2)若BE=13m,BF=4m,求FC的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設m是不小于﹣1的實數,關于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個不相等的實數根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD交于點O,E為AB的中點,G為BC延長線上一點,射線EO與∠ACG的角平分線交于點F,若AB=8,BC=6,則線段EF的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(操作發(fā)現)
如圖①,在邊長為1個單位長度的小正方形組成的網格中,△ABC的三個頂點均在格點上.
(1)請按要求畫圖:將△ABC繞點A按逆時針方向旋轉90°,點B的對應點為B′,點C的對應點為C′,連接BB′
(2)在(1)所畫圖形中,∠AB′B= .
(問題解決)
如圖②,在等邊三角形ABC中,AC=,點P在△ABC內,且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學通過觀察、分析、思考,對上述問題形成了如下想法:
想法一:將△APC繞點A按順時針方向旋轉60°,得到△AP′B,連接PP′,尋找線段PA、PC之間的數量關系;
想法二:將△APB繞點A按逆時針方向旋轉60°,得到△AP′C′,連接PP′,尋找線段PA、PC之間的數量關系;
請參考小明同學的想法,完成該問題的解答過程.(求解一種方法即可)
(靈活運用)
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數),直接寫出BD的長(用含k的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點C在△ABC內作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關系?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形中,,線段上有動點,過作直線交邊于點,并使得.
當與重合時,求的長;
在直線上是否存在一點,使得是等腰直角三角形?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:正方形的邊長為厘米,對角線上的兩個動點,.點從點,點從點同時出發(fā),沿對角線以厘米/秒的相同速度運動,過作交的直角邊于,過作交的直角邊于,連接,.設、、、圍成的圖形面積為,,,圍成的圖形面積為(這里規(guī)定:線段的面積為到達,到達停止.若的運動時間為秒,解答下列問題:
如圖,判斷四邊形是什么四邊形,并證明;
當時,求為何值時,;
若是與的和,試用的代數式表示.(如圖為備用圖)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com