如圖,直線與軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)當t=1秒時,求梯形OPFE的面積;
(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
(3)設t的值分別取t1、t2時(t1≠t2),所對應的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.
(1)18;(2)50;(3)相似
【解析】
試題分析:(1)先根據直線的性質求出A、B兩點的坐標,再根據點A的移動規(guī)律,得到AP的長,從而求出OP的長;又因為EF=BE,用OB的長減去OE的長即可求出EF的長;從而利用梯形面積公式求出梯形OPFE面積;
(2)設OE=t,AP=3t,利用梯形面積公式,將梯形面積轉化為關于t的二次函數表達式,求二次函數的最大值即可;
(3)作FD⊥x軸于D,則四邊形OEFD為矩形.求出三角形各邊的長度表達式,計算出對應邊的比值,加上一個夾角相等,即可得到結果.
設梯形OPFE的面積為S.
(1) A(20,0),B(0,20)
∴OA=OB=20,∠A=∠B=45°
當t=1時,OE=1,AP=3
∴OP=17,EF=BE=19
∴S=(OP+EF)·OE=18;
(2) OE=t,AP=3t
∴OP=20-3t,EF=BE=20-t
∴S=(OP+EF)·OE=(20-3t +20-t)·t=-2t2+20t=-2(t-5)2+50
∴當t=5 (在0<t<范圍內)時,S最大值=50;
(3) 作FD⊥x軸于D,則四邊形OEFD為矩形
∴FD=OE=t,AF=FD=t,又AP=3t
當t=t1時,AF1=t1,AP1=3t1
當t=t2時,AF2=t2,AP2=3t2
∴,又∠A=∠A
∴△AF1P1∽△AF2P2.
考點:本題考查的是相似三角形的判定與性質,二次函數的性質
點評:解答本題的關鍵是熟記求二次函數的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2013屆浙江臨安於潛第一初級中學九年級上期末綜合考試數學試卷(一)(帶解析) 題型:解答題
(本題12分)
如圖,直線與軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)當t=1秒時,求梯形OPFE的面積;
(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
(3)設t的值分別取t1、t2時(t1≠t2),所對應的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.
查看答案和解析>>
科目:初中數學 來源:2012-2013學年浙江臨安於潛第一初級中學九年級上期末綜合考試數學試卷(一)(解析版) 題型:解答題
(本題12分)
如圖,直線與軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)當t=1秒時,求梯形OPFE的面積;
(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
(3)設t的值分別取t1、t2時(t1≠t2),所對應的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.
查看答案和解析>>
科目:初中數學 來源:2011年初中畢業(yè)升學考試(福建漳州卷)數學 題型:解答題
(11·漳州)(滿分14分)如圖1,拋物線y=mx2-11mx+24m (m<0) 與x軸交于B、C兩點(點B在點C的左側),拋物線另有一點A在第一象限內,且∠BAC=90°.
(1)填空:OB=_ ▲ ,OC=_ ▲ ;
(2)連接OA,將△OAC沿x軸翻折后得△ODC,當四邊形OACD是菱形時,求此時拋物線的解析式;
(3)如圖2,設垂直于x軸的直線l:x=n與(2)中所求的拋物線交于點M,與CD交于點N,若直線l 沿x軸方向左右平移,且交點M始終位于拋物線上A、C兩點之間時,試探究:當n為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com