在平面直角坐標系xOy中,已知二次函數(shù)的圖像經(jīng)過原點及點A(1,2),與x軸相交于另一點B.

(1)求:二次函數(shù)的解析式及B點坐標;
(2)若將拋物線為對稱軸向右翻折后,得到一個新的二次函數(shù),已知二次函數(shù)與x軸交于兩點,其中右邊的交點為C點.點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側作正方形PDEF(當P點運動時,點D.點E、點F也隨之運動);
①當點E在二次函數(shù)y1的圖像上時,求OP的長.
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,同時線段OC上另一個點Q從C點出發(fā)向O點做勻速運動,速度為每秒2個單位長度(當Q點到達O點時停止運動,P點也同時停止運動).過Q點作x軸的垂線,與直線AC交于G點,以QG為邊在QG的左側作正方形QGMN(當Q點運動時,點G、點M、點N也隨之運動),若P點運動t秒時,兩個正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.
(1),B(3,0);(2)①;②或2.

試題分析:(1)利用二次函數(shù)的圖象經(jīng)過原點及點A(1,2),分別代入求出a,c的值即可;
(2)①過A點作AH⊥x軸于H點,根據(jù)DP∥AH,得出△OPD∽△OHA,進而求出OP的長;
②分別利用當點F、點N重合時,當點F、點Q重合時,當點P、點N重合時,當點P、點Q重合時,求出t的值即可.
試題解析:(1)∵二次函數(shù)的圖象經(jīng)過原點及點A(1,2),∴將(0,0),代入得出:c=0,將(1,2)代入得出:a+3=2,解得:,故二次函數(shù)解析式為:,∵圖象與x軸相交于另一點B,∴,解得:x=0或3,則B(3,0);
(2)①由已知可得C(6,0),如圖:過A點作AH⊥x軸于H點,∵DP∥AH,∴△OPD∽△OHA,∴,即,∴PD=2a,∵正方形PDEF,∴E(3a,2a),∵E(3a,2a)在二次函數(shù)y1=﹣x2+3x的圖象上,∴a=;即OP=;
②如圖1:

當點F、點N重合時,有OF+CN=6,∵直線AO過點(1,2),故直線解析式為:y=2x,當OP=t,則AP=2t,∵直線AC過點(1,2),(6,0),代入y=ax+b,,,解得:,故直線AC的解析式為:,∵當OP=t,QC=2t,∴QO=6﹣2t,∴GQ=,即NQ=,∴OP+PN+NQ+QC=6,則有,解得:;
如圖2:

當點F、點Q重合時,有OF+CQ=6,則有,解得:;
如圖3:

當點P、點N重合時,有OP+CN=6,則有,解得:;
如圖4:

當點P、點Q重合時,有OP+CQ=6,則有,解得:.故此刻t的值為:,,
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)的圖象經(jīng)過點,,
(1)求此二次函數(shù)的關系式;
(2)求此二次函數(shù)圖象的頂點坐標;
(3)填空:把二次函數(shù)的圖象沿坐標軸方向最少平移  個單位,使得該圖象的頂點在原點.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線x=﹣4與x軸交于點E,一開口向上的拋物線過原點交線段OE于點A,交直線x=﹣4于點B,過B且平行于x軸的直線與拋物線交于點C,直線OC交直線AB于D,且AD:BD=1:3.

(1)求點A的坐標;
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過A(﹣3,0),B(1,0)兩點,與y軸交于點C,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,△ADF的面積為S.
①求S與m的函數(shù)關系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點,與y軸交于C點,已知點B坐標為(4,0).

(1)求拋物線的解析式;
(2)判斷△ABC的形狀,說出△ABC外接圓的圓心位置,并求出圓心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知是拋物線上的點,則(      )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

己知關于x的二次函數(shù)的圖象經(jīng)過原點,則m=         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,鉛球運動員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關系式是y=-x2+x+,則該運動員此次擲鉛球,鉛球出手時的高度為              .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù) 的頂點坐標是(    )
A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)

查看答案和解析>>

同步練習冊答案