是等邊三角形,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),是以為邊的等邊三角形,過點(diǎn)作的平行線,分別交射線于點(diǎn),連接.
(1)如圖(a)所示,當(dāng)點(diǎn)在線段上時(shí),
①求證:;
②探究:四邊形是怎樣特殊的四邊形?并說明理由;
(2)如圖(b)所示,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),
①第(1)題中所求證和探究的兩個(gè)結(jié)論是否仍然成立?(直接寫出,不必說明理由)
②當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形?并說明理由.
(1)①見解析,②平行四邊形(2)①成立,②BC=CD
【解析】解:(1) ① ∵ △ABC和△ADE都是等邊三角形,
∴ AE=AD,AB=AC,∠EAD=∠BAC=60°.
又∵ ∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD
∴ ∠EAB=∠DAC,
∴ △AEB≌△ADC. ………………………………………………………(3分)
② 四邊形是平行四邊形. ………………………………………(6分)
(2)(1)中的結(jié)論:
① △AEB≌△ADC,② 四邊形是平行四邊形,均成立. ……………………(8分)
(3)當(dāng)BC=CD時(shí),四邊形BCFE是菱形.……………………………………………(9分)
理由: 由①得△AEB≌△ADC,
∴BE=BC
又∵ BE=CD,
∴ BC=CD.
由②得四邊形是平行四邊形,
∴ 四邊形是菱形. ……………………………………………(13分)
(1)①證明:因∠EAB+∠BAD=∠BAD+∠DAC=60度,所以∠EAB=∠DAC,又EA=DA,BA=CA,故△AEB≌△ADC.。②于是∠EBC=∠EBA+∠ABC=∠DCA+∠ABC=120度。那么∠EBC+∠BCG=120度+60度=180度,于是EB//GC,又EG//BC,故BCGE為一平行四邊形。 (2)BEGC仍為平行四邊形。與(1)類似,容易證明:ΔABE全等于ΔACD,那么∠ABE=∠ACD=120度,于是∠CBE=∠ACB=60度,進(jìn)而BE//GC,又BC//EG,從而得證。(3)欲使其成為菱形,只須BE=BC,又BE=CD,故只須選取D點(diǎn)使BC=CD即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆福建省南安市初二下學(xué)期期末考試數(shù)學(xué)卷(帶解析) 題型:解答題
是等邊三角形,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),是以為邊的等邊三角形,過點(diǎn)作的平行線,分別交射線于點(diǎn),連接.
(1)如圖(a)所示,當(dāng)點(diǎn)在線段上時(shí),
①求證:;
②探究:四邊形是怎樣特殊的四邊形?并說明理由;
(2)如圖(b)所示,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),
①第(1)題中所求證和探究的兩個(gè)結(jié)論是否仍然成立?(直接寫出,不必說明理由)
②當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年天津市南開區(qū)八年級(jí)第一學(xué)期期中考試數(shù)學(xué)卷 題型:填空題
如圖,已知是等邊三角形,點(diǎn)是上任意一點(diǎn),分別與兩邊垂直,等邊三角形的高為,則的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
是等邊三角形,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),是以為邊的等邊三角形,過點(diǎn)作的平行線,分別交射線于點(diǎn),連接.
(1)如圖(a)所示,當(dāng)點(diǎn)在線段上時(shí).
①求證:;
②探究四邊形是怎樣特殊的四邊形?并說明理由;
(2)如圖(b)所示,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),直接寫出(1)中的兩個(gè)結(jié)論是否成立?
(3)在(2)的情況下,當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形?并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com