如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=______°.
∵PD切⊙O于點C,
∴∠OCD=90°;
又∵CO=CD,
∴∠COD=∠D=45°;
∴∠A=
1
2
∠COD=22.5°(同弧所對的圓周角是所對的圓心角的一半),
∵OA=OC,
∴∠A=∠ACO=22.5°(等邊對等角),
∴∠PCA=180°-∠ACO-∠OCD=67.5°.
故答案是:67.5°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,AB=AC=10,BC=12,以A為圓心,分別以下列長為半徑作圓,請你判定⊙A與直線BC的位置關系.(1)6;(2)8;(3)12.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,過⊙O外一點M作⊙O的兩條切線,切點為A、B,連接AB、OA、OB、C、D在⊙O上居于弦AB兩端,過點D作⊙O的切線交MA、MB于E、F,連接OE、OF、CA、CB,則圖中與∠ACB相等的角(不包含∠ACB)有(  )
A.3個B.4個C.5個D.6個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.
(1)若AB=2,∠P=30°,求AP的長;
(2)若D為AP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,O是AB上一點,以O為圓心,OB為半徑的圓與AB交于E,與AC切于點D,直線ED交BC的延長線于F.
(1)求證:BC=FC;
(2)若AD:AE=2:1,求cot∠F的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,D是半徑為R的⊙O上一點,過點D作⊙O的切線交直徑AB的延長線于點C,下列四個條件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=
3
R.其中,使得BC=R的有( 。
A.①②B.①③④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,割線PAB、PCD分別交⊙O于AB和CD,若PC=2,CD=16,PA:AB=1:2,則AB=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,O是已知線段AB上一點,以OB為半徑的⊙O交線段AB于點C,以線段AO為直徑的半圓交⊙O于點D,過點B作AB的垂線與AD的延長線交于點E;
(1)求證:AE切⊙O于點D;
(2)若AC=2,且AC、AD的長是關于x的方程x2-kx+4
5
=0
的兩根,求線段EB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC中,以AB為直徑的⊙O交AC于點D,且D為AC的中點,過D作DE丄CB,垂足為E.
(1)判斷直線DE與⊙O的位置關系,并說明理由;
(2)已知CD=4,CE=3,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案