如圖,點O是四邊形ABCD與A′B′C′D′的位似中心,則    =    =    ;∠ABC=    ,∠OCB=   
【答案】分析:位似是特殊的相似,因而對應邊的比相等,對應角相等.
解答:解:點O是四邊形ABCD與A'B'C'D'的位似中心,則這兩個圖形相似,因而對應邊的比相等,對應角相等,因而則===;∠ABC=∠ABC,∠OCB′=∠OCB.
點評:本題主要考查了位似的定義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點E是四邊形ABCD的對角線BD上的一點,且∠BAC=∠BDC=∠DAE.
(1)試說明:BE•AD=CD•AE;
(2)根據(jù)圖形的特點,猜想
BCDE
可能等于哪兩條線段的比?并說明你的猜想是正確的.(注:只需寫出圖中已知線段的一組比即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點O是四邊形BCED外接圓的圓心,點O在BC上,點A在CB的延長線上,且∠ADB=∠DEB,精英家教網(wǎng)EF⊥BC于點F,交⊙O于點M,EM=2
5

(1)求證:AD是⊙O的切線;
(2)若弧BM上有一動點P,且DE=
14
,sin∠CPM=
2
3
,求tan∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點O是四邊形BCED外接圓的圓心,點O在BC上,點A在CB的延長線上,且∠AD精英家教網(wǎng)B=∠DEB,EF⊥BC于點F,交⊙O于點M,EM=2
5

(1)求證:AD是⊙O的切線;
(2)若弧BM上有一動點P,且sin∠CPM=
2
3
,求⊙O直徑的長;
(3)在(2)的條件下,如果DE=
14
,求tan∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是四邊形ABCD內(nèi)一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點O是四邊形ABCD與A′B′C′D′的位似中心,則
 
=
 
=
 
;∠ABC=
 
,∠OCB=
 

查看答案和解析>>

同步練習冊答案